幾何学の意味での量子化の一般化 2 固有値としてのホモロジー群系列

郷原 惇平 1 ,廣田 祐士 2 ,稲生 景水 1 ,佐古 彰史 1

東京理科大学 1 , 麻布大学 2

September 13, 2019

arXiv:1909.02361

Contents

- 1 モチベーション
- 2 準備
- 3 圏論的固有値
- 4 (コ)ホモロジーと圏論的固有値の関係
- 5 まとめと今後の展望

モチベーション

いろんな量子化を 1 つの圏の枠組みで捉えることができた。

■ 色々な理論から1つの理論が選択される什組みは圏論の枠組みで作れ

■ 1 例としてハミルトニアン形式のようなものを考えたい .(固有値問

■ いろんな量子化を 1 つの圏の枠組みで捉えることができた.

■ 色々な理論から 1 つの理論が選択される什組みは圏論の枠組みで作れ るか?

■ 1 例としてハミルトニアン形式のようなものを考えたい .(固有値問

モチベーション

■ いろんな量子化を 1 つの圏の枠組みで捉えることができた.

■ 色々な理論から 1 つの理論が選択される什組みは圏論の枠組みで作れ るか?

■ 1 例としてハミルトニアン形式のようなものを考えたい .(固有値問 題として扱いたい)

いろんな量子化を1つの圏の枠組みで捉えることができた。

■ 色々な理論から 1 つの理論が選択される什組みは圏論の枠組みで作れ るか?

■ 1 例としてハミルトニアン形式のようなものを考えたい .(固有値問 題として扱いたい)

■ 固有値問題を扱う圏論的な枠組みが B. Elias. and M. Hogancamp (2017) によって与えられた.

干チベーション

数学的準備

定義 (複体)

 $\mathscr C$ を加法圏とする. $\mathscr C$ の対象と射の列 $X=\{X^i,d_X^i\}$

$$X = \cdots \longrightarrow X^{i-1} \xrightarrow{d_X^{i-1}} X^i \xrightarrow{d_X^i} X^{i+1} \longrightarrow \cdots$$

が条件

$$d_X^i \circ d_X^{i-1} = 0 \quad (\forall i \in \mathbb{Z})$$

を満たすとき,Xを \mathscr{C} における複体という.

定義 (複体の射)

000000

 \mathscr{C} を加法圏とする. $X = \{X^i, d_X^i\}, Y = \{Y^i, d_Y^i\}$ を複体とする.X か らYへの複体の射 $f: X \longrightarrow Y$ とは、 $\mathscr C$ の射の列 $f = \{f^i \in \mathscr C(X^i, Y^i)\}$ であって、可換性

$$f^{i+1}\circ d_X^i=d_Y^i\circ f^i\quad (\forall i\in\mathbb{Z})$$

が成り立つ.複体の射の合成について, $X\stackrel{f}{\longrightarrow} Y\stackrel{g}{\longrightarrow} Z$ を複体の射とす るとき,合成を

$$g \circ f := \{ g^i \circ f^i \}$$

で定義し,複体の恒等射を,

$$id_X = \{id_{X^i}\}$$

で与える.

定義 (複体の圏)

加法圏 $\mathscr C$ に対して,複体を対象とし,複体の射を射とする圏を複体の圏と いい, $C(\mathscr{C})$ で表す.

定義 (シフト関手)

 $X = \{X^i, d_X^i\}$ を圏 $\mathscr C$ の複体とする $n \in \mathbb Z$ に対して X を n シフトし た複体 *X*[n] を

$$X[n]^i = X^{i+n}, \quad d^i_{X[n]} = (-1)^n d^{i+n}_X$$

により

$$X[n]\colon \cdots \longrightarrow X^{i-n+1} \xrightarrow{(-1)^n d_X^{i-1+n}} X^{i+n} \xrightarrow{(-1)^n d_X^{i+n}} X^{i+1+n} \longrightarrow \cdots$$

と定義する.

000000

定義 (写像錘)

 $f\colon X\longrightarrow Y$ を加法圏 $\mathscr C$ における複体の射とする.このとき $\{Z^i,d^i_{\mathscr C}\}$ を ,

$$\begin{split} Z := X[1] \oplus Y, \quad Z^i &= X^{i+1} \oplus Y^i \\ d_Z^i &= \left[\begin{array}{cc} -d_{X[1]}^i & 0 \\ f^i[1] & d_Y^i \end{array} \right] = \left[\begin{array}{cc} -d_X^{i+1} & 0 \\ f^{i+1} & d_Y^i \end{array} \right] \end{split}$$

により定義すると $Z = \{Z^i, d_Z^i\}$ はまた複体となる . これを f の写像錘 といい Cone(f) で表す.

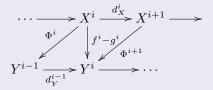
定義 (ホモトピー)

000000

 $\mathscr C$ を加法圏, $X=\{X^i,d_X^i\},Y=\{Y^i,d_Y^i\}$ を $\mathscr C$ の複体, $f,g\colon X\longrightarrow Y$ を複体の射とする.このとき f から q へのホモトピー Φ とは,射の列 $\Phi = \{\Phi^i \colon X^i \longrightarrow Y^{i-1}\}$ であって,

$$f^{i} - g^{i} = d_{Y}^{i-1} \circ \Phi^{i} + \Phi^{i+1} \circ d_{X}^{i} \quad (\forall i \in \mathbb{Z})$$

を満たす. すなわち,



f から g へのホモトピーが存在するとき , f は g にホモトピックであると いい , $f\sim g, f \underset{\pi}{\sim} g$ とかく . 特に $f\sim 0$ をヌルホモトピックであると いう.

定義(ホモトピー圏)

 $\mathscr C$ をプレ加法圏とし, $C(\mathscr C)$ をその複体のなす圏とする.すべての $X,Y\in ob(C(\mathscr C))$ に対して,

$$\mathcal{N}_{X,Y} := \{ f \in C(\mathcal{C})(X,Y) | f \sim 0 \}$$

とする.この時,ホモトピー圏 $K(\mathscr{C})$ を

$$K(\mathscr{C}) := C(\mathscr{C})/\mathscr{N}$$

で定める.

定義 (ホモトピー<u>同値)</u>

圏 $\mathscr C$ の複体 $X,Y\in ob(C(\mathscr C))$ に対して,その間の射 $f\in C(\mathscr C)(X,Y), g\in C(\mathscr C)(Y,X)$ とホモトピー Φ,Ψ が存在して,

$$g \circ f \underset{\Psi}{\sim} id_X, \quad f \circ g \underset{\Phi}{\sim} id_Y$$

が成り立つとき,XとYはホモトピー同値といい, $X \simeq Y$ で表す.

圏論的固有値

•0

圏論的固有値について B. Elias. and M. Hogancamp (2017) を基に review を行う.以下, \mathscr{K} を可換環の圏, \mathscr{A} を代数の圏(モノイダルホモトピー

定義 (固有対象)

複体 $F \in ob(\mathscr{A})$ を固定する $\lambda \in ob(\mathscr{A})$ に対して $\alpha \in \mathscr{A}(\lambda, F)$ が存在 し, $\alpha \otimes id_M: \lambda \otimes M \to F \otimes M$ がホモトピー同値を与えるとき, $M(\neq 0) \in \mathscr{V}$ を F の α による固有対象と呼ぶ.

命題

複体 $F \in ob(\mathscr{A})$ を固定する \mathscr{A} の対象 λ と射 $\alpha: \lambda \to F$ に対して , $M \in ob(\mathscr{V})$ が固有対象であることは , $\operatorname{Cone}(\alpha) \otimes M \simeq 0$ と同値である .

例:可換環の固有値 |

可換環 A を , $A = \mathbb{Z}[x]/(x^2-1)$ とし , A 加群の複体として ,

$$F = (0 \longrightarrow \underline{A} \xrightarrow{x-1} A \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0)$$

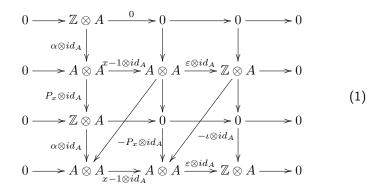
を考える.ここで,下線は複体の列の0番目を表し, ε は $\varepsilon(ax+b)=a+b$ で定義する.このとき,写像 $\mathbb{Z}\longrightarrow A.1\mapsto 1+x$ は複 体の射 $\alpha \colon \mathbb{Z} \longrightarrow F$ を誘導する.ただし, \mathbb{Z} は0 番目が \mathbb{Z} で他は0 の複体 であるとする.この α に対する写像錘 $Cone(\alpha)$ は

$$0\oplus \mathbb{Z}=\mathbb{Z}, 0\oplus A=A, \mathbb{Z}\oplus 0=0$$
 より ,

$$\operatorname{Cone}(\alpha) = \mathbb{Z}[1] \oplus F = (0 \longrightarrow \mathbb{Z} \xrightarrow{x+1} \underline{A} \xrightarrow{x-1} A \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0)$$

例:可換環の固有値 ||

と書ける.このとき A が固有対象ということを確かめる.すなわち $\alpha \otimes id_A : \mathbb{Z} \otimes A \xrightarrow{\sim} F \otimes A$ であることを示す.ホモトピーの自明なもの は省略し,次のような図式を得る.



例:可換環の固有値 |||

ここで, $\iota:\mathbb{Z}\longrightarrow A$ を埋め込み, $P_x\colon A\longrightarrow A$ を $P_x(ax+b)=a$ と定義する.すると,上の図式は可換になることがわかる.

また, $\mathrm{Cone}(lpha)\otimes A\simeq 0$ となることを確認する. $\mathrm{Cone}(lpha)=\mathbb{Z}[1]\oplus F$ であるから,

$$\operatorname{Cone}(\alpha) = (0 \longrightarrow \mathbb{Z} \longrightarrow A \longrightarrow A \longrightarrow \mathbb{Z} \longrightarrow 0)$$

となり,

$$\operatorname{Cone}(\alpha) \otimes A = (0 \longrightarrow \mathbb{Z} \otimes A \longrightarrow A \otimes A \longrightarrow A \otimes A \longrightarrow \mathbb{Z} \otimes A \longrightarrow 0)$$

例:可換環の固有値 IV

を得る.このとき $\operatorname{Cone}(\alpha) \otimes A \simeq 0$ が言えればよい.すなわち ,

$$0 \longrightarrow \mathbb{Z} \otimes A \xrightarrow{\alpha \otimes id_A} A \otimes A \xrightarrow{x-1 \otimes id_A} A \otimes A \xrightarrow{\varepsilon \otimes id_A} \mathbb{Z} \otimes A \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

が可換になることを示せばよいが,図式2の射は,図式1と同じ射なので 可換であることは明らかである.

定理 (J.G., Yuji Hirota, Ino Keisui and Akifumi Sako (2019))

 \mathscr{A} をモノイダルホモトピー圏とし,複体 $F \in ob(\mathscr{A})$ を固定する

$$F = (\cdots \to F_{n-1} \xrightarrow{\tilde{d}_{n-1}^F} F_n \xrightarrow{\tilde{d}_n^F} F_{n+1} \to \cdots).$$

また、複体 $\lambda \in \mathcal{A}$ を次のように与える

$$\lambda = (\cdots \to \lambda_{n-1} \xrightarrow{0} \lambda_n \xrightarrow{0} \lambda_{n+1} \to \cdots).$$

このとき $\alpha := \{f_n : \lambda_n \to (\operatorname{Im} \tilde{d}_{n-1}^F)^{\perp} \subset F_n\} \in \mathscr{A}(\lambda, F)$ に対して, $\operatorname{Cone}(\alpha) \simeq 0$ が満たされるのは , 任意の n に対して λ_n が F のコホモロ ジー群と同型の時, すなわち

$$\lambda_n = \frac{\ker \tilde{d}_n^F}{\operatorname{Im} \tilde{d}_{n-1}^F} = H_n(F)$$

が成り立つときに限る.

双対の場合についてもホモロジー群としてこの命題が成り立つ、ただし、 写像錘のシフトは -1 となることに注意.

例: S^1 のホモロジー群 lacktrian

複体 $F \ge \lambda$ をそれぞれ以下のように与える

$$F = (0 \longrightarrow C_1(S^1) \longrightarrow C_0(S^1) \longrightarrow 0),$$

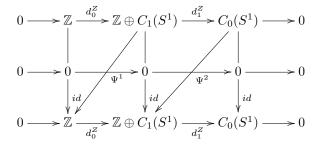
$$\lambda = (0 \longrightarrow H_1(S^1) \longrightarrow H_0(S^1) \longrightarrow 0)$$

$$= (0 \longrightarrow \mathbb{Z} \stackrel{0}{\longrightarrow} \mathbb{Z} \longrightarrow 0).$$

 S^1 の三角形分割 $\triangle ABC$ を考え, $C_1(S^1)$ の基底として $\triangle ABC$ の三辺, $C_0(S^1)$ の基底として [B] - [A] , [C] - [B], [A] をそれぞれ選ぶ.以下の

(コ) ホモロジーと圏論的固有値の関係

図式に対して



例: $\overline{S^1}$ のホモロジー群 oxdots

(コ) ホモロジーと圏論的固有値の関係

それぞれの射とホモトピーを

$$d_0^Z = {}^t (0, 1, 1, 1), \quad d_1^Z = \begin{pmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & 0 \end{pmatrix},$$

$$\Psi^1 = (0, 0, 0, -1), \quad \Psi^2 = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

例: S^1 のホモロジー群 IV

とすると, $Cone(\alpha) \simeq 0$ となる. 実際,

$$\begin{split} \Psi^1 \circ d_0^Z &= -1, \\ \Psi^2 \circ d_1^Z + d_0^Z \circ \Psi^1 &= \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \\ d_1^Z \circ \Psi^2 &= \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}. \end{split}$$

■ 例としてある複体の圏論的固有値として(コ)ホモロジー群が得ら

物理的な意味を持つ例を作っていきたい

例えば BRST コホモロジー?

■ 例としてある複体の圏論的固有値として(コ)ホモロジー群が得ら れた.

物理的な意味を持つ例を作っていきたい

例えば BRST コホモロジー?

■ 例としてある複体の圏論的固有値として(コ)ホモロジー群が得ら れた.

■ 物理的な意味を持つ例を作っていきたい

例えば BRST コホモロジー?

■ 例としてある複体の圏論的固有値として(コ)ホモロジー群が得ら れた.

■ 物理的な意味を持つ例を作っていきたい

■ 例えば BRST コホモロジー?

References I

- [1] A. Chandler, N. Karnick, D. Vagner: Categorical diagonalization. A chapter in the MSRI Proceedings: Soergel Bimodules.
- [2] B. Elias. and M. Hogancamp: Categorical diagonalization. arXiv:1707.04349v1.
- [3] B. Elias. and M. Hogancamp: Categorical diagonalization of full twists arXiv:1801.00191v1.
- [4] J. Gohara, Y. Hirota, K. Ino and A. Sako: *Homology groups and categorcal diagonalization* arXiv:1909.02361

ご清聴ありがとうございました.