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2D CPN-1 model is not only a toy model of QCD, 
but also effectively describes gauge theory !

 Lattice study on CPN-1 model is of physical significance

・Effective theory on vortex in U(N) + Higgs model is CPN-1

・Effective theory on long strings in YM is CPN-1

・It is also notable that CP1 describes spin chain systems
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dimensional reduction

· 1d limit : QM of a particle on sphere
(due to twisted b.c.)potential with two minima

· fractional instanton

kink 
(tunneling)

complex bion solution 
complex φ-plane

CPN-1 sigma model

S =
1

2g2

Z
|D�|2 |�|2 = 1, D� = (d+ ia)�, a = i�̄ · d�

◆Lagrangian of CPN-1 models

discretized on the lattice

CPN�1 =
SU(N)

SU(N � 1)⇥ U(1)
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・ZN-twisted b.c.

・Global symmetry : PSU(N) flavor symmetry + Time reversal

・ZN symmetry is not exact for periodic b. c. (cf. QCD)

CPN-1 sigma model on R x S1

Exact ZN-symmetry
with ZN vacua

�(x1, x2 + L) = ⌦�(x1, x2)

・Fractional instantons (Q=1/N, S=SI/N)

30

! !

FIG. 9: Fractional instanton configuration on S2 in the reduced quantum mechanics is depicted. It corre-

sponds to a single line from the north to the south pole which is rotated over the half of S2 homogeneously.

The figure depicts the rotation of the line around the half sphere. The red arrows denote paths depending

on x2 with a constant x1, while the blue arrows denote the x1 dependence of such paths.

!
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FIG. 10: Fractional (anti-)instanton configurations in the reduced quantum mechanics is depicted on the

S2 target space of the CP 1 model. The first and second homotopy groups for instantons in the sine-Gordon

model and CP 1 model are shown. Configurations with positive values of the second homotopy class π2 are

BPS while those with negative values are anti-BPS both in the CP 1 model and reduced sine-Gordon model.

Thus, (a) and (d) are BPS while (b) and (c) are anti-BPS.
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A Fractional instantons of CPN�1 sigma model

The CPN�1 model is defined by
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Here, � is N -component complex fields with |�|2 = 1, D� = (d + ia)� is the covariant
derivative, and a is U(1) gauge field. By solving the equation of motion, we get

a = i� · d�. (A.2)
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Therefore, for a fixed topological charge, the minimal action is given by the (anti-)BPS
solution [124, 125],

D�± i ?D� = 0. (A.4)

Introducing the stereographic coordinate, � is represented by the (N � 1)-component com-
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Then, the (anti-)BPS equation becomes the (anti-)holomorphic condition,

(@x ± i@t)n = 0. (A.6)

The fractional instanton appears by introducing the twisted boundary condition on
R⇥ S1,
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where C is the clock matrix, diag(1,!, . . . ,!N�1), with ! = e2⇡i/N . Using the dimensionless
complex coordinate z = 2⇡

NL(x+ it), the fractional instanton is given by
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Distribution of 
P-loop for N=5
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considered in the present paper, the action density and the topological charge density are

reduced to be functions of x1 after the integration over x2:
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where we have defined the action density s(x1) and the charge density q(x1) depending only

on x1. We note that the action and charge with the factor 1/(2π) yield integers or multiples

of 1/N after x1 integration. In this paper, we omit the coupling 1/g2 for simplicity.

The CP 1 model is equivalent to the O(3) nonlinear sigma model, described by three real

scalar fields m(x) = (m1(x),m2(x),m3(x))T with a constraint m(x)2 = 1. More explicitly,

m(x) = n†(x)σ⃗n(x) =
ω†(x)σ⃗ω(x)

ω†(x)ω(x)
(11)

=
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ω†(x)ω(x)
,

with the Pauli matrices σ⃗. Then, the action is
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III. FRACTIONALIZED INSTANTONS AND NEUTRAL-BION

CONFIGURATION IN ZN TWISTED BOUNDARY CONDITIONS

A. ZN twisted boundary conditions

In the present section, we propose a neutral bion ansatz for a ZN twisted boundary

condition in the CPN−1 model on R1×S1. ZN twisted boundary conditions in a compactified

direction is expressed as [9, 10]

ω(x1, x2 + L) = Ω ω(x1, x2) , Ω = diag.
[
1, e2πi/N , e4πi/N , · · ·, e2(N−1)πi/N

]
. (13)

In SU(N) gauge theories with adjoint quarks, this ZN twisted boundary condition cor-

responds to the vacuum with the gauge symmetry breaking SU(N) → U(1)N−1, where

Wilson-loop holonomy in the compactified direction is given by

⟨A2⟩ = (0, 2π/N, · · ·, 2(N − 1)π/N) , for N ≥ 3 , (14)BPS eq.

BPS sol.

＊It is shown to have resurgent structure (pert. vs non-pert. relation)

(intertwined of ZN flavor shift & center)

Dunne, Unsal(12) TM, Nitta, Sakai(14,15) Fujimori, et.al.(16~)

� =
(1, e2⇡z/(NL), ...)p
1 + |e2⇡z/(NL)|2 + ...



摂動級数と非摂動的寄与の関係

X
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aqg
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「摂動的寄与と非摂動的寄与は関連付かない異なる寄与」
というのが一般的な見方

摂動級数 非摂動的寄与

本当にそうだろうか？



摂動計算とボレル和[29]. The divergence encodes physical information about the saddles of ordinary integrals, or

path integrals of quantum mechanics and quantum field theory, as a consequence of Darboux’s

theorem [1, 3]. We recall a few relevant definitions and motivate (known) generalizations of

those definitions by using simple quantum mechanics.

Let P (g2) denote a perturbative asymptotic series that satisfies the “Gevrey-1” condition:

P (g2) =
⇥�

q=0

aqg
2q, Gevrey � 1 : |aq| ⇥ CRqq! (6.1)

for some positive constants C and R [5, 7]. Known examples of perturbative series that arise

in quantum mechanics and QFT satisfy the “Gevrey-1” condition [29]. We denote the Borel

transform of P (�) by BP (t) and define it as

BP (t) :=
⇥�

q=0

aq
q!
tq. (6.2)

The formal Borel transform determines “a germ of a holomorphic function” at t = 0, with

a finite radius of convergence. Next, one analytically continues the obtained germ BP (t)

to the whole complex t-plane, called the Borel plane. We also assume that the analytic

continuation of the Borel transform BP (t) is “endlessly continuable”. That roughly means

that the function is represented by an analytic function with a discrete set of singularities

(poles or cuts) on its Riemann surface. The Borel resummation of P (g2), when it exists, is

defined as the Laplace transform of the analytic continuation of the germ:

B(g2) = 1

g2

⇥ ⇥

0
BP (t)e�t/g2dt . (6.3)

In quantum theories with multiple-degenerate vacua, (but no instability of any kind), per-

turbation theory is typically a non-alternating Gevrey-1 series, hence non Borel resummable

[20, 21, 24, 26, 27, 29]. Non-Borel summability means that there is no unique answer in

perturbation theory; i.e., resummed perturbation theory does not produce a unique answer

for a physical observable which ought to be unique, for example, the ground state energy. Of

course, this is senseless. This means that perturbation theory (re-summed or otherwise) is

insu⇤cient to define the theory.

In certain cases, a perturbative sum which is not Borel summable becomes Borel summable

upon continuation g2 ⇤ �g2, see Fig. 2. In simple quantum mechanics, let us mention an

example that is directly relevant for our purpose [21]. Perturbation theory for the peri-

odic potential V (x) = 1
g2 sin

2(gx) is non-Borel summable, whereas perturbation theory for

V (x) = 1
g2 sinh

2(gx) is Borel summable. [Recall and compare with the 0-dimensional parti-

tion functions discussed in Section 1.6]. Both series are, of course, asymptotic and divergent.

The di�erence between the two is that the asymptotic series which arises in the first case is

non-alternating, whereas the series in the latter is just the alternating version of the former.

Let us refer to the Borel resummed series for the latter, Borel resummable series, as B0(g2).
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I. INTRODUCTION
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⟨x = a|e−Hτ/!|x = b⟩ =
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d[x(τ)] e−SE [x(τ)]/! (6)

P (a → b) ≈ e−
1
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∫ b
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2mV (x) (7)

ボレル変換：有限の収束半径を持つ級数に変換
ボレル和：元の摂動級数を漸近級数として持つ解析関数

摂動級数（漸近級数と仮定）は
一般に階乗発散し収束半径0 aq / q!

高次まで摂動計算を行っても意味のある情報は得られなさそうだが…
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for a physical observable which ought to be unique, for example, the ground state energy. Of

course, this is senseless. This means that perturbation theory (re-summed or otherwise) is

insu⇤cient to define the theory.

In certain cases, a perturbative sum which is not Borel summable becomes Borel summable

upon continuation g2 ⇤ �g2, see Fig. 2. In simple quantum mechanics, let us mention an
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of the Borel transform. The Borel transform method is applicable to the following class of
divergent series (called Gevrey-1)

P (g2) =
1X

q=0

aq(g2)q, |aq| ∑ Cq!
µ

1
A

∂q

, (12)
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One can easily see that the Borel resummation B(g2) reproduces the original sum P (g2) correctly
whenever one can exchange the integral and the sum. Otherwise, we need to define the sum in
terms of the Borel resummation.

As a simplified toy model, let us consider a factorially divergent series of the following one
with alternating signs
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This altenating factorially divergent series is a typical example of Borel summable divergent
series.

On the other hand, if perturbation series is not alternating, the factorially divergent series
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ボレル変換

摂動級数（漸近級数と仮定）は
一般に階乗発散し収束半径0 aq / q!
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一般的にはボレル変換が正の実軸上に特異点を持つ

摂動級数（漸近級数と仮定）は
一般に階乗発散し収束半径0 aq / q!

B(g2e±i✏)

Z 1e±i✏

0

dt

g2
e
� t

g2 BP (t)
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I. INTRODUCTION
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=
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!2 ψ (1)

[
H0 + g2Hpert

]
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∫
dt

[
m

2

(
dx

dt

)2

− V (x)
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P (a → b) ≈ e−
1
!
∫ b
a dx

√
2mV (x) (7)

積分路の不定性に付随して
符合の不定性を持つ虚部が出現

この摂動ボレル和の不定虚部こそ非摂動寄与の情報を含む！
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Im[B(g2)] ⇡ e
� A

g2

摂動級数（漸近級数と仮定）は
一般に階乗発散し収束半径0 aq / q!

B(g2e±i✏) = Re[B]± iIm[B]



形式的解 at z=∞

ΔɽE(1)
np ͷ৔߹͸ෆఆੑ͕ͳ͍ͨΊɼO(g)ͷ෦෼Λྵͱ͠

ͯɼγϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔ ∂ϵE|ϵ=1 ͷݫ

ີ݁Ռͷඇઁಈ෦෼Λ׬શʹ͢ݱ࠶ΔɽE(2)
np ͷ O(g)ͷ෦

෼΋ɼෆఆੑ૬ࡴͷཁ੥ʹՃ͑ͯɼجఈঢ়ଶΤωϧΪʔ͕

ωͷؔۮ਺Ͱ͋Δͱ͍͏໛ܕͷੑ࣭Λิ͏ͱ׬શʹܾఆͰ

͖Δɽ͜͏ͯ͠ϦαʔδΣϯεΛ༻͍ͯಋग़ͨ͠׬શͳτ

ϥϯεڃ਺͸ɼγϡϨʔσΟϯΨʔํఔࣜͷີݫղ͔Βಘ

ΒΕΔ 1
2∂

2
ϵE|ϵ=1 Λ׬શʹ͢ݱ࠶Δɽ͜ͷΑ͏ʹɼϦαʔ

δΣϯεཧ࿦ͷਖ਼͚ͩ͠͞Ͱͳ͘ɼͦͷ༗༻ੑ΋͜ͷ໛ܕ

Ͱ͔֬ΊΔ͜ͱ͕Ͱ͖ͨɽ

࣮͸͜͜Ͱѻͬͨ໛ܕ͸ɼ2࣍ݩN = (2, 0)௒ରশCPN−1

γάϚ໛ܕΛίϯύΫτԽ͠12, 13, 14, 15)ɼϑΣϧϛΦϯ਺อ

ଘྔΛݻఆͯ͠ಘΒΕΔྔܥֶྗࢠͷҰྫ (N = 2ͷ৔߹)

Ͱ͋ΔɽචऀΒ͸ɼͦΕΒͷ໛ܕͰશͯͷόΠΦϯղΛٻ

ΊɼͦΕΒʹ෇ਵ͢Δγϯϒϧੵ෼Λ࣮͢ߦΔ͜ͱͰશͯ

ͷόΠΦϯ͔Βͷ४ݹయతد༩ΛٻΊͨ8)ɽͦΕʹରͯ͠

ෆఆੑͷ૬ࡴͱ͍͏ϦαʔδΣϯεཧ࿦͔Βͷཁ੥Λ՝͢

͜ͱʹΑͬͯɼ֤όΠΦϯղ͔Βͷد༩ͱͦͷ·ΘΓͷઁ

ಈڃ਺ϘϨϧ࿨͔Β੒Δ׬શͳτϥϯεڃ਺Λߏ੒͢Δ͜

ͱ͕Ͱ͖Δɽ্هͷΑ͏ʹɼN = 2ͷ৔߹ɼͦͷΑ͏ͳτ

ϥϯεڃ਺͸γϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔີݫ

݁ՌΛ͢ݱ࠶ΔɽҰํͰ N > 2ͷ৔߹͸ɼ൑໌͍ͯ͠Δ

׬Ռ͕Ұ෦Ͱ͋ΔͨΊɼϦαʔδΣϯεͷ݁Ռͱͷ݁ີݫ

શͳൺֱ͸Ͱ͖͍ͯͳ͍ɽ͔͠͠ɼผͷํݟΛ͢Ε͹ɼ্

ͷ݁Ռ͸ɼଞͷख๏Ͱ͸ಘΒΕͳ͍ඇઁಈత෺ཧྔΛܾه

ఆͰ͖Δͱ͍͏ϦαʔδΣϯεཧ࿦ͷ͞ྗڧΛ͍ࣔͯ͠Δɽ

·ͨɼྔࢠ࿦ɼͦΕ΋ ͰܕΔ໛͢܎ؔʹ࿦ࢠ৔ͷྔݩ2࣍

ϦαʔδΣϯεߏ଄͕׬શʹ໌֬Խ͞Εͨͷ͸ॳΊͯͰ͋

ΓɼϦαʔδΣϯεཧ࿦ͷ৔ͷྔࢠ࿦΁ͷԠ༻Մೳੑ͕ߴ

·ͬͨɽ

7. ඍ෼ํఔࣜͰͷϦαʔδΣϯεʹֶͿ

৅ΛΑΓਂ͘ཧղ͢ΔͨΊʹɼৗඍ෼ํఔݱ࿦Ͱͷࢠྔ

ࣜ (ODE)Ͱࣜܗత΂͖ڃ਺ղ͔ΒҰൠͷղΛߏ੒͢Δମ

ܥ (ODEͰͷϦαʔδΣϯεཧ࿦)Λઆ໌͠Α͏3)ɽ؆୯ͳ

ྫͱͯ͠ɼz = ∞ʹෆ֬ఆಛҟ఺Λ࣋ͭৗඍ෼ํఔࣜ

ϕ′(z) + ϕ(z) =
1

z
(37)

Λ͑ߟΔɽࣜܗత΂͖ڃ਺ղΦ0 =
∑∞

n=0 n! z
−n−1 ͷϘϨϧ

ม׵͸ BΦ0[t] =
1

1−t Ͱ༩͑ΒΕɼਖ਼ͷ্࣮࣠ʹಛҟ఺Λ࣋

ͭ8ɽҰൠղ͸ɼύϥϝʔλʔ σ ∈ RΛಋೖͨ͠τϥϯεڃ
਺ϕ(z;σ) = Φ0+σe−z Ͱ༩͑ΒΕɼͦͷϘϨϧ࿨͸ಛҟ఺

Λආ͚ΔඍখҼࢠ ϵΛؚΉԋࢉS±Φ0 ≡
∫∞e±iϵ

0 e−ztBΦ0(t)

8͜͜Ͱɼz ͸ྔֶྗࢠͷ 1/g ʹʹରԠ͢Δͱ͑ࢥ͹ྑ͍ɽ

Λ༻͍ͯ࣍ͷΑ͏ʹදΘͤΔ9ɽ

S±ϕ(z;σ) = S±Φ0(z) + σe−z. (38)

͜͜Ͱ͸ڥք৚݅ΛఆΊͯσΛܾΊͨͱ͠Α͏ɽͱ͜Ζ͕ɼ

ม਺ z = |z|eiθ͕ετʔΫεઢ θ = 0Λԣ੾Δࡍʹͦͷ઴ۙ

ΔͨΊɼղΛ༩͖͑ى৅͕ݱมԽ͢ΔετʔΫεʹܹٸ͕ܗ

Δσͷ஋͕ετʔΫεఆ਺ s = 2πiͷ෼͚ͩෆ࿈ଓʹมԽ͢

ΔɽϘϨϧ࿨ S±ʹؚ·ΕΔ±ϵ ͸ θͷඍখมԽͱಉ౳ͳͷ

ͰɼετʔΫεઢ θ = 0্Ͱ͸ S+ϕ(z;σ) → S−ϕ(z;σ+ s)

ͷΑ͏ͳ௓ͼ͕ੜ͡Δ͜ͱʹͳΔɽͦͷ݁Ռɼղͷ࿈ଓੑ

S+ϕ(z;σ) = S−ϕ(z;σ + s)͔Βɼ

S+Φ0(z)− S−Φ0(z) = 2πie−z (39)

ͱ͍͏͕ؔ܎ಘΒΕΔɽ͜ͷΑ͏ʹৗඍ෼ํఔࣜʹ͓͍ͯ

͸ɼ“ઁಈత”ͳ΂͖ڃ਺ Φ0 ͷϘϨϧ࿨͕ e−z ΛؚΉ “ඇ

ઁಈత”د༩ͱؔ܎෇͍͍ͯΔɽΤΧʔϧ (Ecalle)͸ඇઢܗ

ͳ৔߹ΛؚΉҰൠͷ ODEʹ͓͍ͯ΋ʮద੾ͳ਺ͷτϥϯ

εڃ਺ύϥϝʔλʔΛಋೖ͢Δ͜ͱͰɼৗඍ෼ํఔࣜͷղ

͕͜ͷΑ͏ͳࣜܗతղͷτϥϯεڃ਺ͱͯ͠ॻ͚Δʯͱ͍

͏ॏཁͳ࣮ࣄΛࣔͨ͠3)ɽ

ઁಈڃ਺ͱඇઁಈڃ਺ͷؔ܎Λ໌֬Խ͠ɼਅͷղΛಋग़͢

Δମܥ͸ΤΠϦΞϯղੳ (Alien calculus)ͱݺ͹ΕΔ3, 16, 17)ɽ

্ͷྫΛΤΠϦΞϯղੳͷݴ༿Ͱݟ௚ͯ͠ΈΑ͏ɽ·ͣε

τʔΫεઢΛ·͙ͨ 2ͭͷϘϨϧ࿨Λͭͳ͙࡞܈༻ͱͯ͠ɼ

ετʔΫεࣗݾಉܕSΛఆٛ͢Δɽ

S+ = S− ◦S, S = exp
[
e−z∆

]
(40)

͜͜Ͱɼ∆͸ਖ਼্࣮࣠ t = 1ͷಛҟ఺ʹ͍ͭͯͷΤΠϦΞ

ϯඍ෼ͱݺ͹Εɼަ܎ؔ׵ [e−z∆, ∂σ] = 0Λຬͨ͠ɼτϥ

ϯεڃ਺ ϕ(z;σ)΁ͷ࡞༻͕ҎԼΛ༩͑Δɽ

e−z∆ϕ(z;σ) = s ∂σϕ(z;σ) (41)

͜͜Ͱൺྫ܎਺ͱͯ͠ετʔΫεఆ਺ s ΕΔɽΤΠݱ͕

ϦΞϯඍ෼ͱҰൠͷඍ෼ԋࢉΛ͚ؔͮ܎Δ͜ͷํఔࣜ͸ϒ

Ϧοδํఔࣜͱݺ͹Εɼ྆ลΛൺֱ͢Δ͜ͱͰ∆Φ0 = sͱ

∆e−z = 0͕ಘΒΕΔɽ͜ͷ݁Ռͱ (40)ӈࣜΛ༻͍Δͱ

SΦ0 = Φ0 + se−z, Sϕ(z;σ) = ϕ(z;σ + s) (42)

͕Θ͔Δɽ࠷ऴతʹɼӈࣜ྆ลʹ S−Λ࡞༻ͤ͞ ࣜࠨ(40)

Λ͏࢖ͱ S+ϕ(z;σ) = S−ϕ(z;σ+ s) ͕ಘΒΕɼετʔΫε

଄ͷຊ࣭ΛߏͱΤΠϦΞϯඍ෼͕ϦαʔδΣϯεܕಉݾࣗ

දΘ͍ͯ͠Δ͜ͱ͕Θ͔Δɽ͜͜Ͱॏཁͳ͜ͱ͸ɼʮઁಈڃ

਺͔Βඇઁಈد༩ͷ৘ใΛநग़Մೳʯͱ͍͏఺Ͱ͋Δɽͭ

·Γɼઁಈڃ਺͕׬શʹཧղͰ͖Ε͹ඇઁಈڃ਺͕ಘΒΕɼ
9ඇઢܗ ODEͰ͸͜ͷΑ͏ͳࣜܗతղ͕ແݸݶଘ͠ࡏɼτϥϯεڃ਺

͸ແݸݶͷ߲͔ΒͳΔɽ
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摂動的 非摂動的

リサージェンス構造が存在．しかしなぜ？
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2∂
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γάϚ໛ܕΛίϯύΫτԽ͠12, 13, 14, 15)ɼϑΣϧϛΦϯ਺อ
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Ͱ͋ΔɽචऀΒ͸ɼͦΕΒͷ໛ܕͰશͯͷόΠΦϯղΛٻ

ΊɼͦΕΒʹ෇ਵ͢Δγϯϒϧੵ෼Λ࣮͢ߦΔ͜ͱͰશͯ

ͷόΠΦϯ͔Βͷ४ݹయతد༩ΛٻΊͨ8)ɽͦΕʹରͯ͠

ෆఆੑͷ૬ࡴͱ͍͏ϦαʔδΣϯεཧ࿦͔Βͷཁ੥Λ՝͢

͜ͱʹΑͬͯɼ֤όΠΦϯղ͔Βͷد༩ͱͦͷ·ΘΓͷઁ

ಈڃ਺ϘϨϧ࿨͔Β੒Δ׬શͳτϥϯεڃ਺Λߏ੒͢Δ͜

ͱ͕Ͱ͖Δɽ্هͷΑ͏ʹɼN = 2ͷ৔߹ɼͦͷΑ͏ͳτ

ϥϯεڃ਺͸γϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔີݫ

݁ՌΛ͢ݱ࠶ΔɽҰํͰ N > 2ͷ৔߹͸ɼ൑໌͍ͯ͠Δ

׬Ռ͕Ұ෦Ͱ͋ΔͨΊɼϦαʔδΣϯεͷ݁Ռͱͷ݁ີݫ

શͳൺֱ͸Ͱ͖͍ͯͳ͍ɽ͔͠͠ɼผͷํݟΛ͢Ε͹ɼ্

ͷ݁Ռ͸ɼଞͷख๏Ͱ͸ಘΒΕͳ͍ඇઁಈత෺ཧྔΛܾه

ఆͰ͖Δͱ͍͏ϦαʔδΣϯεཧ࿦ͷ͞ྗڧΛ͍ࣔͯ͠Δɽ

·ͨɼྔࢠ࿦ɼͦΕ΋ ͰܕΔ໛͢܎ؔʹ࿦ࢠ৔ͷྔݩ2࣍

ϦαʔδΣϯεߏ଄͕׬શʹ໌֬Խ͞Εͨͷ͸ॳΊͯͰ͋

ΓɼϦαʔδΣϯεཧ࿦ͷ৔ͷྔࢠ࿦΁ͷԠ༻Մೳੑ͕ߴ

·ͬͨɽ

7. ඍ෼ํఔࣜͰͷϦαʔδΣϯεʹֶͿ

৅ΛΑΓਂ͘ཧղ͢ΔͨΊʹɼৗඍ෼ํఔݱ࿦Ͱͷࢠྔ

ࣜ (ODE)Ͱࣜܗత΂͖ڃ਺ղ͔ΒҰൠͷղΛߏ੒͢Δମ

ܥ (ODEͰͷϦαʔδΣϯεཧ࿦)Λઆ໌͠Α͏3)ɽ؆୯ͳ

ྫͱͯ͠ɼz = ∞ʹෆ֬ఆಛҟ఺Λ࣋ͭৗඍ෼ํఔࣜ

ϕ′(z) + ϕ(z) =
1

z
(37)

Λ͑ߟΔɽࣜܗత΂͖ڃ਺ղΦ0 =
∑∞

n=0 n! z
−n−1 ͷϘϨϧ

ม׵͸ BΦ0[t] =
1

1−t Ͱ༩͑ΒΕɼਖ਼ͷ্࣮࣠ʹಛҟ఺Λ࣋

ͭ8ɽҰൠղ͸ɼύϥϝʔλʔ σ ∈ RΛಋೖͨ͠τϥϯεڃ
਺ϕ(z;σ) = Φ0+σe−z Ͱ༩͑ΒΕɼͦͷϘϨϧ࿨͸ಛҟ఺

Λආ͚ΔඍখҼࢠ ϵΛؚΉԋࢉS±Φ0 ≡
∫∞e±iϵ

0 e−ztBΦ0(t)

8͜͜Ͱɼz ͸ྔֶྗࢠͷ 1/g ʹʹରԠ͢Δͱ͑ࢥ͹ྑ͍ɽ

Λ༻͍ͯ࣍ͷΑ͏ʹදΘͤΔ9ɽ

S±ϕ(z;σ) = S±Φ0(z) + σe−z. (38)

͜͜Ͱ͸ڥք৚݅ΛఆΊͯσΛܾΊͨͱ͠Α͏ɽͱ͜Ζ͕ɼ

ม਺ z = |z|eiθ͕ετʔΫεઢ θ = 0Λԣ੾Δࡍʹͦͷ઴ۙ

ΔͨΊɼղΛ༩͖͑ى৅͕ݱมԽ͢ΔετʔΫεʹܹٸ͕ܗ

Δσͷ஋͕ετʔΫεఆ਺ s = 2πiͷ෼͚ͩෆ࿈ଓʹมԽ͢

ΔɽϘϨϧ࿨ S±ʹؚ·ΕΔ±ϵ ͸ θͷඍখมԽͱಉ౳ͳͷ

ͰɼετʔΫεઢ θ = 0্Ͱ͸ S+ϕ(z;σ) → S−ϕ(z;σ+ s)

ͷΑ͏ͳ௓ͼ͕ੜ͡Δ͜ͱʹͳΔɽͦͷ݁Ռɼղͷ࿈ଓੑ

S+ϕ(z;σ) = S−ϕ(z;σ + s)͔Βɼ

S+Φ0(z)− S−Φ0(z) = 2πie−z (39)

ͱ͍͏͕ؔ܎ಘΒΕΔɽ͜ͷΑ͏ʹৗඍ෼ํఔࣜʹ͓͍ͯ

͸ɼ“ઁಈత”ͳ΂͖ڃ਺ Φ0 ͷϘϨϧ࿨͕ e−z ΛؚΉ “ඇ

ઁಈత”د༩ͱؔ܎෇͍͍ͯΔɽΤΧʔϧ (Ecalle)͸ඇઢܗ

ͳ৔߹ΛؚΉҰൠͷ ODEʹ͓͍ͯ΋ʮద੾ͳ਺ͷτϥϯ

εڃ਺ύϥϝʔλʔΛಋೖ͢Δ͜ͱͰɼৗඍ෼ํఔࣜͷղ

͕͜ͷΑ͏ͳࣜܗతղͷτϥϯεڃ਺ͱͯ͠ॻ͚Δʯͱ͍

͏ॏཁͳ࣮ࣄΛࣔͨ͠3)ɽ

ઁಈڃ਺ͱඇઁಈڃ਺ͷؔ܎Λ໌֬Խ͠ɼਅͷղΛಋग़͢

Δମܥ͸ΤΠϦΞϯղੳ (Alien calculus)ͱݺ͹ΕΔ3, 16, 17)ɽ

্ͷྫΛΤΠϦΞϯղੳͷݴ༿Ͱݟ௚ͯ͠ΈΑ͏ɽ·ͣε

τʔΫεઢΛ·͙ͨ 2ͭͷϘϨϧ࿨Λͭͳ͙࡞܈༻ͱͯ͠ɼ

ετʔΫεࣗݾಉܕSΛఆٛ͢Δɽ

S+ = S− ◦S, S = exp
[
e−z∆

]
(40)

͜͜Ͱɼ∆͸ਖ਼্࣮࣠ t = 1ͷಛҟ఺ʹ͍ͭͯͷΤΠϦΞ

ϯඍ෼ͱݺ͹Εɼަ܎ؔ׵ [e−z∆, ∂σ] = 0Λຬͨ͠ɼτϥ

ϯεڃ਺ ϕ(z;σ)΁ͷ࡞༻͕ҎԼΛ༩͑Δɽ

e−z∆ϕ(z;σ) = s ∂σϕ(z;σ) (41)

͜͜Ͱൺྫ܎਺ͱͯ͠ετʔΫεఆ਺ s ΕΔɽΤΠݱ͕

ϦΞϯඍ෼ͱҰൠͷඍ෼ԋࢉΛ͚ؔͮ܎Δ͜ͷํఔࣜ͸ϒ

Ϧοδํఔࣜͱݺ͹Εɼ྆ลΛൺֱ͢Δ͜ͱͰ∆Φ0 = sͱ

∆e−z = 0͕ಘΒΕΔɽ͜ͷ݁Ռͱ (40)ӈࣜΛ༻͍Δͱ

SΦ0 = Φ0 + se−z, Sϕ(z;σ) = ϕ(z;σ + s) (42)

͕Θ͔Δɽ࠷ऴతʹɼӈࣜ྆ลʹ S−Λ࡞༻ͤ͞ ࣜࠨ(40)

Λ͏࢖ͱ S+ϕ(z;σ) = S−ϕ(z;σ+ s) ͕ಘΒΕɼετʔΫε

଄ͷຊ࣭ΛߏͱΤΠϦΞϯඍ෼͕ϦαʔδΣϯεܕಉݾࣗ

දΘ͍ͯ͠Δ͜ͱ͕Θ͔Δɽ͜͜Ͱॏཁͳ͜ͱ͸ɼʮઁಈڃ

਺͔Βඇઁಈد༩ͷ৘ใΛநग़Մೳʯͱ͍͏఺Ͱ͋Δɽͭ

·Γɼઁಈڃ਺͕׬શʹཧղͰ͖Ε͹ඇઁಈڃ਺͕ಘΒΕɼ
9ඇઢܗ ODEͰ͸͜ͷΑ͏ͳࣜܗతղ͕ແݸݶଘ͠ࡏɼτϥϯεڃ਺
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Ecalle (81)

ΔɽE(1)
np ͷ৔߹͸ෆఆੑ͕ͳ͍ͨΊɼO(g)ͷ෦෼Λྵͱ͠

ͯɼγϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔ ∂ϵE|ϵ=1 ͷݫ

ີ݁Ռͷඇઁಈ෦෼Λ׬શʹ͢ݱ࠶ΔɽE(2)
np ͷ O(g)ͷ෦

෼΋ɼෆఆੑ૬ࡴͷཁ੥ʹՃ͑ͯɼجఈঢ়ଶΤωϧΪʔ͕

ωͷؔۮ਺Ͱ͋Δͱ͍͏໛ܕͷੑ࣭Λิ͏ͱ׬શʹܾఆͰ

͖Δɽ͜͏ͯ͠ϦαʔδΣϯεΛ༻͍ͯಋग़ͨ͠׬શͳτ

ϥϯεڃ਺͸ɼγϡϨʔσΟϯΨʔํఔࣜͷີݫղ͔Βಘ

ΒΕΔ 1
2∂

2
ϵE|ϵ=1 Λ׬શʹ͢ݱ࠶Δɽ͜ͷΑ͏ʹɼϦαʔ

δΣϯεཧ࿦ͷਖ਼͚ͩ͠͞Ͱͳ͘ɼͦͷ༗༻ੑ΋͜ͷ໛ܕ

Ͱ͔֬ΊΔ͜ͱ͕Ͱ͖ͨɽ

࣮͸͜͜Ͱѻͬͨ໛ܕ͸ɼ2࣍ݩN = (2, 0)௒ରশCPN−1

γάϚ໛ܕΛίϯύΫτԽ͠12, 13, 14, 15)ɼϑΣϧϛΦϯ਺อ

ଘྔΛݻఆͯ͠ಘΒΕΔྔܥֶྗࢠͷҰྫ (N = 2ͷ৔߹)

Ͱ͋ΔɽචऀΒ͸ɼͦΕΒͷ໛ܕͰશͯͷόΠΦϯղΛٻ

ΊɼͦΕΒʹ෇ਵ͢Δγϯϒϧੵ෼Λ࣮͢ߦΔ͜ͱͰશͯ

ͷόΠΦϯ͔Βͷ४ݹయతد༩ΛٻΊͨ8)ɽͦΕʹରͯ͠

ෆఆੑͷ૬ࡴͱ͍͏ϦαʔδΣϯεཧ࿦͔Βͷཁ੥Λ՝͢

͜ͱʹΑͬͯɼ֤όΠΦϯղ͔Βͷد༩ͱͦͷ·ΘΓͷઁ

ಈڃ਺ϘϨϧ࿨͔Β੒Δ׬શͳτϥϯεڃ਺Λߏ੒͢Δ͜

ͱ͕Ͱ͖Δɽ্هͷΑ͏ʹɼN = 2ͷ৔߹ɼͦͷΑ͏ͳτ

ϥϯεڃ਺͸γϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔີݫ

݁ՌΛ͢ݱ࠶ΔɽҰํͰ N > 2ͷ৔߹͸ɼ൑໌͍ͯ͠Δ

׬Ռ͕Ұ෦Ͱ͋ΔͨΊɼϦαʔδΣϯεͷ݁Ռͱͷ݁ີݫ

શͳൺֱ͸Ͱ͖͍ͯͳ͍ɽ͔͠͠ɼผͷํݟΛ͢Ε͹ɼ্

ͷ݁Ռ͸ɼଞͷख๏Ͱ͸ಘΒΕͳ͍ඇઁಈత෺ཧྔΛܾه

ఆͰ͖Δͱ͍͏ϦαʔδΣϯεཧ࿦ͷ͞ྗڧΛ͍ࣔͯ͠Δɽ

·ͨɼྔࢠ࿦ɼͦΕ΋ ͰܕΔ໛͢܎ؔʹ࿦ࢠ৔ͷྔݩ2࣍

ϦαʔδΣϯεߏ଄͕׬શʹ໌֬Խ͞Εͨͷ͸ॳΊͯͰ͋

ΓɼϦαʔδΣϯεཧ࿦ͷ৔ͷྔࢠ࿦΁ͷԠ༻Մೳੑ͕ߴ

·ͬͨɽ

7. ඍ෼ํఔࣜͰͷϦαʔδΣϯεʹֶͿ

৅ΛΑΓਂ͘ཧղ͢ΔͨΊʹɼৗඍ෼ํఔݱ࿦Ͱͷࢠྔ

ࣜ (ODE)Ͱࣜܗత΂͖ڃ਺ղ͔ΒҰൠͷղΛߏ੒͢Δମ

ܥ (ODEͰͷϦαʔδΣϯεཧ࿦)Λઆ໌͠Α͏3)ɽ؆୯ͳ

ྫͱͯ͠ɼz = ∞ʹෆ֬ఆಛҟ఺Λ࣋ͭৗඍ෼ํఔࣜ

ϕ′(z) + ϕ(z) =
1

z
(37)

Λ͑ߟΔɽࣜܗత΂͖ڃ਺ղΦ0 =
∑∞

n=0 n! z
−n−1 ͷϘϨϧ

ม׵͸ BΦ0[t] =
1

1−t Ͱ༩͑ΒΕɼਖ਼ͷ্࣮࣠ʹಛҟ఺Λ࣋

ͭ8ɽҰൠղ͸ɼύϥϝʔλʔ σ ∈ RΛಋೖͨ͠τϥϯεڃ
਺ϕ(z;σ) = Φ0+σe−z Ͱ༩͑ΒΕɼͦͷϘϨϧ࿨͸ಛҟ఺

Λආ͚ΔඍখҼࢠ ϵΛؚΉԋࢉS±Φ0 ≡
∫∞e±iϵ

0 e−ztBΦ0(t)

8͜͜Ͱɼz ͸ྔֶྗࢠͷ 1/g ʹʹରԠ͢Δͱ͑ࢥ͹ྑ͍ɽ

Λ༻͍ͯ࣍ͷΑ͏ʹදΘͤΔ9ɽ

S±ϕ(z;σ) = S±Φ0(z) + σe−z. (38)

͜͜Ͱ͸ڥք৚݅ΛఆΊͯσΛܾΊͨͱ͠Α͏ɽͱ͜Ζ͕ɼ

ม਺ z = |z|eiθ͕ετʔΫεઢ θ = 0Λԣ੾Δࡍʹͦͷ઴ۙ

ΔͨΊɼղΛ༩͖͑ى৅͕ݱมԽ͢ΔετʔΫεʹܹٸ͕ܗ

Δσͷ஋͕ετʔΫεఆ਺ s = 2πiͷ෼͚ͩෆ࿈ଓʹมԽ͢

ΔɽϘϨϧ࿨ S±ʹؚ·ΕΔ±ϵ ͸ θͷඍখมԽͱಉ౳ͳͷ

ͰɼετʔΫεઢ θ = 0্Ͱ͸ S+ϕ(z;σ) → S−ϕ(z;σ+ s)

ͷΑ͏ͳ௓ͼ͕ੜ͡Δ͜ͱʹͳΔɽͦͷ݁Ռɼղͷ࿈ଓੑ

S+ϕ(z;σ) = S−ϕ(z;σ + s)͔Βɼ

S+Φ0(z)− S−Φ0(z) = 2πie−z (39)

ͱ͍͏͕ؔ܎ಘΒΕΔɽ͜ͷΑ͏ʹৗඍ෼ํఔࣜʹ͓͍ͯ

͸ɼ“ઁಈత”ͳ΂͖ڃ਺ Φ0 ͷϘϨϧ࿨͕ e−z ΛؚΉ “ඇ

ઁಈత”د༩ͱؔ܎෇͍͍ͯΔɽΤΧʔϧ (Ecalle)͸ඇઢܗ

ͳ৔߹ΛؚΉҰൠͷ ODEʹ͓͍ͯ΋ʮద੾ͳ਺ͷτϥϯ

εڃ਺ύϥϝʔλʔΛಋೖ͢Δ͜ͱͰɼৗඍ෼ํఔࣜͷղ

͕͜ͷΑ͏ͳࣜܗతղͷτϥϯεڃ਺ͱͯ͠ॻ͚Δʯͱ͍

͏ॏཁͳ࣮ࣄΛࣔͨ͠3)ɽ

ઁಈڃ਺ͱඇઁಈڃ਺ͷؔ܎Λ໌֬Խ͠ɼਅͷղΛಋग़͢

Δମܥ͸ΤΠϦΞϯղੳ (Alien calculus)ͱݺ͹ΕΔ3, 16, 17)ɽ

্ͷྫΛΤΠϦΞϯղੳͷݴ༿Ͱݟ௚ͯ͠ΈΑ͏ɽ·ͣε

τʔΫεઢΛ·͙ͨ 2ͭͷϘϨϧ࿨Λͭͳ͙࡞܈༻ͱͯ͠ɼ

ετʔΫεࣗݾಉܕSΛఆٛ͢Δɽ

S+ = S− ◦S, S = exp
[
e−z∆

]
(40)

͜͜Ͱɼ∆͸ਖ਼্࣮࣠ t = 1ͷಛҟ఺ʹ͍ͭͯͷΤΠϦΞ

ϯඍ෼ͱݺ͹Εɼަ܎ؔ׵ [e−z∆, ∂σ] = 0Λຬͨ͠ɼτϥ

ϯεڃ਺ ϕ(z;σ)΁ͷ࡞༻͕ҎԼΛ༩͑Δɽ

e−z∆ϕ(z;σ) = s ∂σϕ(z;σ) (41)

͜͜Ͱൺྫ܎਺ͱͯ͠ετʔΫεఆ਺ s ΕΔɽΤΠݱ͕

ϦΞϯඍ෼ͱҰൠͷඍ෼ԋࢉΛ͚ؔͮ܎Δ͜ͷํఔࣜ͸ϒ

Ϧοδํఔࣜͱݺ͹Εɼ྆ลΛൺֱ͢Δ͜ͱͰ∆Φ0 = sͱ

∆e−z = 0͕ಘΒΕΔɽ͜ͷ݁Ռͱ (40)ӈࣜΛ༻͍Δͱ

SΦ0 = Φ0 + se−z, Sϕ(z;σ) = ϕ(z;σ + s) (42)

͕Θ͔Δɽ࠷ऴతʹɼӈࣜ྆ลʹ S−Λ࡞༻ͤ͞ ࣜࠨ(40)

Λ͏࢖ͱ S+ϕ(z;σ) = S−ϕ(z;σ+ s) ͕ಘΒΕɼετʔΫε

଄ͷຊ࣭ΛߏͱΤΠϦΞϯඍ෼͕ϦαʔδΣϯεܕಉݾࣗ

දΘ͍ͯ͠Δ͜ͱ͕Θ͔Δɽ͜͜Ͱॏཁͳ͜ͱ͸ɼʮઁಈڃ

਺͔Βඇઁಈد༩ͷ৘ใΛநग़Մೳʯͱ͍͏఺Ͱ͋Δɽͭ

·Γɼઁಈڃ਺͕׬શʹཧղͰ͖Ε͹ඇઁಈڃ਺͕ಘΒΕɼ
9ඇઢܗ ODEͰ͸͜ͷΑ͏ͳࣜܗతղ͕ແݸݶଘ͠ࡏɼτϥϯεڃ਺

͸ແݸݶͷ߲͔ΒͳΔɽ
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t=1

常微分方程式のリサージェンス構造

ボレル和を通して関係づいている！

z ⇠ 1

g2



• 常微分方程式の解は各漸近級数のボレル和の総和 = トランス級数 

• arg[z]=0でトランス級数パラメタ σ が不連続 = ストークス現象 

• 解の連続性から各形式的解が結びつく

形式的解

：ストークス定数

ΔɽE(1)
np ͷ৔߹͸ෆఆੑ͕ͳ͍ͨΊɼO(g)ͷ෦෼Λྵͱ͠

ͯɼγϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔ ∂ϵE|ϵ=1 ͷݫ

ີ݁Ռͷඇઁಈ෦෼Λ׬શʹ͢ݱ࠶ΔɽE(2)
np ͷ O(g)ͷ෦

෼΋ɼෆఆੑ૬ࡴͷཁ੥ʹՃ͑ͯɼجఈঢ়ଶΤωϧΪʔ͕

ωͷؔۮ਺Ͱ͋Δͱ͍͏໛ܕͷੑ࣭Λิ͏ͱ׬શʹܾఆͰ

͖Δɽ͜͏ͯ͠ϦαʔδΣϯεΛ༻͍ͯಋग़ͨ͠׬શͳτ

ϥϯεڃ਺͸ɼγϡϨʔσΟϯΨʔํఔࣜͷີݫղ͔Βಘ

ΒΕΔ 1
2∂

2
ϵE|ϵ=1 Λ׬શʹ͢ݱ࠶Δɽ͜ͷΑ͏ʹɼϦαʔ

δΣϯεཧ࿦ͷਖ਼͚ͩ͠͞Ͱͳ͘ɼͦͷ༗༻ੑ΋͜ͷ໛ܕ

Ͱ͔֬ΊΔ͜ͱ͕Ͱ͖ͨɽ

࣮͸͜͜Ͱѻͬͨ໛ܕ͸ɼ2࣍ݩN = (2, 0)௒ରশCPN−1

γάϚ໛ܕΛίϯύΫτԽ͠12, 13, 14, 15)ɼϑΣϧϛΦϯ਺อ

ଘྔΛݻఆͯ͠ಘΒΕΔྔܥֶྗࢠͷҰྫ (N = 2ͷ৔߹)

Ͱ͋ΔɽචऀΒ͸ɼͦΕΒͷ໛ܕͰશͯͷόΠΦϯղΛٻ

ΊɼͦΕΒʹ෇ਵ͢Δγϯϒϧੵ෼Λ࣮͢ߦΔ͜ͱͰશͯ

ͷόΠΦϯ͔Βͷ४ݹయతد༩ΛٻΊͨ8)ɽͦΕʹରͯ͠

ෆఆੑͷ૬ࡴͱ͍͏ϦαʔδΣϯεཧ࿦͔Βͷཁ੥Λ՝͢

͜ͱʹΑͬͯɼ֤όΠΦϯղ͔Βͷد༩ͱͦͷ·ΘΓͷઁ

ಈڃ਺ϘϨϧ࿨͔Β੒Δ׬શͳτϥϯεڃ਺Λߏ੒͢Δ͜

ͱ͕Ͱ͖Δɽ্هͷΑ͏ʹɼN = 2ͷ৔߹ɼͦͷΑ͏ͳτ

ϥϯεڃ਺͸γϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔີݫ

݁ՌΛ͢ݱ࠶ΔɽҰํͰ N > 2ͷ৔߹͸ɼ൑໌͍ͯ͠Δ

׬Ռ͕Ұ෦Ͱ͋ΔͨΊɼϦαʔδΣϯεͷ݁Ռͱͷ݁ີݫ

શͳൺֱ͸Ͱ͖͍ͯͳ͍ɽ͔͠͠ɼผͷํݟΛ͢Ε͹ɼ্

ͷ݁Ռ͸ɼଞͷख๏Ͱ͸ಘΒΕͳ͍ඇઁಈత෺ཧྔΛܾه

ఆͰ͖Δͱ͍͏ϦαʔδΣϯεཧ࿦ͷ͞ྗڧΛ͍ࣔͯ͠Δɽ

·ͨɼྔࢠ࿦ɼͦΕ΋ ͰܕΔ໛͢܎ؔʹ࿦ࢠ৔ͷྔݩ2࣍

ϦαʔδΣϯεߏ଄͕׬શʹ໌֬Խ͞Εͨͷ͸ॳΊͯͰ͋

ΓɼϦαʔδΣϯεཧ࿦ͷ৔ͷྔࢠ࿦΁ͷԠ༻Մೳੑ͕ߴ

·ͬͨɽ

7. ඍ෼ํఔࣜͰͷϦαʔδΣϯεʹֶͿ

৅ΛΑΓਂ͘ཧղ͢ΔͨΊʹɼৗඍ෼ํఔݱ࿦Ͱͷࢠྔ

ࣜ (ODE)Ͱࣜܗత΂͖ڃ਺ղ͔ΒҰൠͷղΛߏ੒͢Δମ

ܥ (ODEͰͷϦαʔδΣϯεཧ࿦)Λઆ໌͠Α͏3)ɽ؆୯ͳ

ྫͱͯ͠ɼz = ∞ʹෆ֬ఆಛҟ఺Λ࣋ͭৗඍ෼ํఔࣜ

ϕ′(z) + ϕ(z) =
1

z
(37)

Λ͑ߟΔɽࣜܗత΂͖ڃ਺ղΦ0 =
∑∞

n=0 n! z
−n−1 ͷϘϨϧ

ม׵͸ BΦ0[t] =
1

1−t Ͱ༩͑ΒΕɼਖ਼ͷ্࣮࣠ʹಛҟ఺Λ࣋

ͭ8ɽҰൠղ͸ɼύϥϝʔλʔ σ ∈ RΛಋೖͨ͠τϥϯεڃ
਺ϕ(z;σ) = Φ0+σe−z Ͱ༩͑ΒΕɼͦͷϘϨϧ࿨͸ಛҟ఺

Λආ͚ΔඍখҼࢠ ϵΛؚΉԋࢉS±Φ0 ≡
∫∞e±iϵ

0 e−ztBΦ0(t)

8͜͜Ͱɼz ͸ྔֶྗࢠͷ 1/g ʹʹରԠ͢Δͱ͑ࢥ͹ྑ͍ɽ

Λ༻͍ͯ࣍ͷΑ͏ʹදΘͤΔ9ɽ

S±ϕ(z;σ) = S±Φ0(z) + σe−z. (38)

͜͜Ͱ͸ڥք৚݅ΛఆΊͯσΛܾΊͨͱ͠Α͏ɽͱ͜Ζ͕ɼ

ม਺ z = |z|eiθ͕ετʔΫεઢ θ = 0Λԣ੾Δࡍʹͦͷ઴ۙ

ΔͨΊɼղΛ༩͖͑ى৅͕ݱมԽ͢ΔετʔΫεʹܹٸ͕ܗ

Δσͷ஋͕ετʔΫεఆ਺ s = 2πiͷ෼͚ͩෆ࿈ଓʹมԽ͢

ΔɽϘϨϧ࿨ S±ʹؚ·ΕΔ±ϵ ͸ θͷඍখมԽͱಉ౳ͳͷ

ͰɼετʔΫεઢ θ = 0্Ͱ͸ S+ϕ(z;σ) → S−ϕ(z;σ+ s)

ͷΑ͏ͳ௓ͼ͕ੜ͡Δ͜ͱʹͳΔɽͦͷ݁Ռɼղͷ࿈ଓੑ

S+ϕ(z;σ) = S−ϕ(z;σ + s)͔Βɼ

S+Φ0(z)− S−Φ0(z) = 2πie−z (39)

ͱ͍͏͕ؔ܎ಘΒΕΔɽ͜ͷΑ͏ʹৗඍ෼ํఔࣜʹ͓͍ͯ

͸ɼ“ઁಈత”ͳ΂͖ڃ਺ Φ0 ͷϘϨϧ࿨͕ e−z ΛؚΉ “ඇ

ઁಈత”د༩ͱؔ܎෇͍͍ͯΔɽΤΧʔϧ (Ecalle)͸ඇઢܗ

ͳ৔߹ΛؚΉҰൠͷ ODEʹ͓͍ͯ΋ʮద੾ͳ਺ͷτϥϯ

εڃ਺ύϥϝʔλʔΛಋೖ͢Δ͜ͱͰɼৗඍ෼ํఔࣜͷղ

͕͜ͷΑ͏ͳࣜܗతղͷτϥϯεڃ਺ͱͯ͠ॻ͚Δʯͱ͍

͏ॏཁͳ࣮ࣄΛࣔͨ͠3)ɽ

ઁಈڃ਺ͱඇઁಈڃ਺ͷؔ܎Λ໌֬Խ͠ɼਅͷղΛಋग़͢

Δମܥ͸ΤΠϦΞϯղੳ (Alien calculus)ͱݺ͹ΕΔ3, 16, 17)ɽ

্ͷྫΛΤΠϦΞϯղੳͷݴ༿Ͱݟ௚ͯ͠ΈΑ͏ɽ·ͣε

τʔΫεઢΛ·͙ͨ 2ͭͷϘϨϧ࿨Λͭͳ͙࡞܈༻ͱͯ͠ɼ

ετʔΫεࣗݾಉܕSΛఆٛ͢Δɽ

S+ = S− ◦S, S = exp
[
e−z∆

]
(40)

͜͜Ͱɼ∆͸ਖ਼্࣮࣠ t = 1ͷಛҟ఺ʹ͍ͭͯͷΤΠϦΞ

ϯඍ෼ͱݺ͹Εɼަ܎ؔ׵ [e−z∆, ∂σ] = 0Λຬͨ͠ɼτϥ

ϯεڃ਺ ϕ(z;σ)΁ͷ࡞༻͕ҎԼΛ༩͑Δɽ

e−z∆ϕ(z;σ) = s ∂σϕ(z;σ) (41)

͜͜Ͱൺྫ܎਺ͱͯ͠ετʔΫεఆ਺ s ΕΔɽΤΠݱ͕

ϦΞϯඍ෼ͱҰൠͷඍ෼ԋࢉΛ͚ؔͮ܎Δ͜ͷํఔࣜ͸ϒ

Ϧοδํఔࣜͱݺ͹Εɼ྆ลΛൺֱ͢Δ͜ͱͰ∆Φ0 = sͱ

∆e−z = 0͕ಘΒΕΔɽ͜ͷ݁Ռͱ (40)ӈࣜΛ༻͍Δͱ

SΦ0 = Φ0 + se−z, Sϕ(z;σ) = ϕ(z;σ + s) (42)

͕Θ͔Δɽ࠷ऴతʹɼӈࣜ྆ลʹ S−Λ࡞༻ͤ͞ ࣜࠨ(40)

Λ͏࢖ͱ S+ϕ(z;σ) = S−ϕ(z;σ+ s) ͕ಘΒΕɼετʔΫε

଄ͷຊ࣭ΛߏͱΤΠϦΞϯඍ෼͕ϦαʔδΣϯεܕಉݾࣗ

දΘ͍ͯ͠Δ͜ͱ͕Θ͔Δɽ͜͜Ͱॏཁͳ͜ͱ͸ɼʮઁಈڃ

਺͔Βඇઁಈد༩ͷ৘ใΛநग़Մೳʯͱ͍͏఺Ͱ͋Δɽͭ

·Γɼઁಈڃ਺͕׬શʹཧղͰ͖Ε͹ඇઁಈڃ਺͕ಘΒΕɼ
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ΔɽE(1)
np ͷ৔߹͸ෆఆੑ͕ͳ͍ͨΊɼO(g)ͷ෦෼Λྵͱ͠

ͯɼγϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔ ∂ϵE|ϵ=1 ͷݫ

ີ݁Ռͷඇઁಈ෦෼Λ׬શʹ͢ݱ࠶ΔɽE(2)
np ͷ O(g)ͷ෦

෼΋ɼෆఆੑ૬ࡴͷཁ੥ʹՃ͑ͯɼجఈঢ়ଶΤωϧΪʔ͕

ωͷؔۮ਺Ͱ͋Δͱ͍͏໛ܕͷੑ࣭Λิ͏ͱ׬શʹܾఆͰ

͖Δɽ͜͏ͯ͠ϦαʔδΣϯεΛ༻͍ͯಋग़ͨ͠׬શͳτ

ϥϯεڃ਺͸ɼγϡϨʔσΟϯΨʔํఔࣜͷີݫղ͔Βಘ

ΒΕΔ 1
2∂

2
ϵE|ϵ=1 Λ׬શʹ͢ݱ࠶Δɽ͜ͷΑ͏ʹɼϦαʔ

δΣϯεཧ࿦ͷਖ਼͚ͩ͠͞Ͱͳ͘ɼͦͷ༗༻ੑ΋͜ͷ໛ܕ

Ͱ͔֬ΊΔ͜ͱ͕Ͱ͖ͨɽ

࣮͸͜͜Ͱѻͬͨ໛ܕ͸ɼ2࣍ݩN = (2, 0)௒ରশCPN−1

γάϚ໛ܕΛίϯύΫτԽ͠12, 13, 14, 15)ɼϑΣϧϛΦϯ਺อ

ଘྔΛݻఆͯ͠ಘΒΕΔྔܥֶྗࢠͷҰྫ (N = 2ͷ৔߹)

Ͱ͋ΔɽචऀΒ͸ɼͦΕΒͷ໛ܕͰશͯͷόΠΦϯղΛٻ

ΊɼͦΕΒʹ෇ਵ͢Δγϯϒϧੵ෼Λ࣮͢ߦΔ͜ͱͰશͯ

ͷόΠΦϯ͔Βͷ४ݹయతد༩ΛٻΊͨ8)ɽͦΕʹରͯ͠

ෆఆੑͷ૬ࡴͱ͍͏ϦαʔδΣϯεཧ࿦͔Βͷཁ੥Λ՝͢

͜ͱʹΑͬͯɼ֤όΠΦϯղ͔Βͷد༩ͱͦͷ·ΘΓͷઁ

ಈڃ਺ϘϨϧ࿨͔Β੒Δ׬શͳτϥϯεڃ਺Λߏ੒͢Δ͜

ͱ͕Ͱ͖Δɽ্هͷΑ͏ʹɼN = 2ͷ৔߹ɼͦͷΑ͏ͳτ

ϥϯεڃ਺͸γϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔີݫ

݁ՌΛ͢ݱ࠶ΔɽҰํͰ N > 2ͷ৔߹͸ɼ൑໌͍ͯ͠Δ

׬Ռ͕Ұ෦Ͱ͋ΔͨΊɼϦαʔδΣϯεͷ݁Ռͱͷ݁ີݫ

શͳൺֱ͸Ͱ͖͍ͯͳ͍ɽ͔͠͠ɼผͷํݟΛ͢Ε͹ɼ্

ͷ݁Ռ͸ɼଞͷख๏Ͱ͸ಘΒΕͳ͍ඇઁಈత෺ཧྔΛܾه

ఆͰ͖Δͱ͍͏ϦαʔδΣϯεཧ࿦ͷ͞ྗڧΛ͍ࣔͯ͠Δɽ

·ͨɼྔࢠ࿦ɼͦΕ΋ ͰܕΔ໛͢܎ؔʹ࿦ࢠ৔ͷྔݩ2࣍

ϦαʔδΣϯεߏ଄͕׬શʹ໌֬Խ͞Εͨͷ͸ॳΊͯͰ͋

ΓɼϦαʔδΣϯεཧ࿦ͷ৔ͷྔࢠ࿦΁ͷԠ༻Մೳੑ͕ߴ

·ͬͨɽ

7. ඍ෼ํఔࣜͰͷϦαʔδΣϯεʹֶͿ

৅ΛΑΓਂ͘ཧղ͢ΔͨΊʹɼৗඍ෼ํఔݱ࿦Ͱͷࢠྔ

ࣜ (ODE)Ͱࣜܗత΂͖ڃ਺ղ͔ΒҰൠͷղΛߏ੒͢Δମ

ܥ (ODEͰͷϦαʔδΣϯεཧ࿦)Λઆ໌͠Α͏3)ɽ؆୯ͳ

ྫͱͯ͠ɼz = ∞ʹෆ֬ఆಛҟ఺Λ࣋ͭৗඍ෼ํఔࣜ

ϕ′(z) + ϕ(z) =
1

z
(37)

Λ͑ߟΔɽࣜܗత΂͖ڃ਺ղΦ0 =
∑∞

n=0 n! z
−n−1 ͷϘϨϧ

ม׵͸ BΦ0[t] =
1

1−t Ͱ༩͑ΒΕɼਖ਼ͷ্࣮࣠ʹಛҟ఺Λ࣋

ͭ8ɽҰൠղ͸ɼύϥϝʔλʔ σ ∈ RΛಋೖͨ͠τϥϯεڃ
਺ϕ(z;σ) = Φ0+σe−z Ͱ༩͑ΒΕɼͦͷϘϨϧ࿨͸ಛҟ఺

Λආ͚ΔඍখҼࢠ ϵΛؚΉԋࢉS±Φ0 ≡
∫∞e±iϵ

0 e−ztBΦ0(t)

8͜͜Ͱɼz ͸ྔֶྗࢠͷ 1/g ʹʹରԠ͢Δͱ͑ࢥ͹ྑ͍ɽ

Λ༻͍ͯ࣍ͷΑ͏ʹදΘͤΔ9ɽ

S±ϕ(z;σ) = S±Φ0(z) + σe−z. (38)

͜͜Ͱ͸ڥք৚݅ΛఆΊͯσΛܾΊͨͱ͠Α͏ɽͱ͜Ζ͕ɼ

ม਺ z = |z|eiθ͕ετʔΫεઢ θ = 0Λԣ੾Δࡍʹͦͷ઴ۙ

ΔͨΊɼղΛ༩͖͑ى৅͕ݱมԽ͢ΔετʔΫεʹܹٸ͕ܗ

Δσͷ஋͕ετʔΫεఆ਺ s = 2πiͷ෼͚ͩෆ࿈ଓʹมԽ͢

ΔɽϘϨϧ࿨ S±ʹؚ·ΕΔ±ϵ ͸ θͷඍখมԽͱಉ౳ͳͷ

ͰɼετʔΫεઢ θ = 0্Ͱ͸ S+ϕ(z;σ) → S−ϕ(z;σ+ s)

ͷΑ͏ͳ௓ͼ͕ੜ͡Δ͜ͱʹͳΔɽͦͷ݁Ռɼղͷ࿈ଓੑ

S+ϕ(z;σ) = S−ϕ(z;σ + s)͔Βɼ

S+Φ0(z)− S−Φ0(z) = 2πie−z (39)

ͱ͍͏͕ؔ܎ಘΒΕΔɽ͜ͷΑ͏ʹৗඍ෼ํఔࣜʹ͓͍ͯ

͸ɼ“ઁಈత”ͳ΂͖ڃ਺ Φ0 ͷϘϨϧ࿨͕ e−z ΛؚΉ “ඇ

ઁಈత”د༩ͱؔ܎෇͍͍ͯΔɽΤΧʔϧ (Ecalle)͸ඇઢܗ

ͳ৔߹ΛؚΉҰൠͷ ODEʹ͓͍ͯ΋ʮద੾ͳ਺ͷτϥϯ

εڃ਺ύϥϝʔλʔΛಋೖ͢Δ͜ͱͰɼৗඍ෼ํఔࣜͷղ

͕͜ͷΑ͏ͳࣜܗతղͷτϥϯεڃ਺ͱͯ͠ॻ͚Δʯͱ͍

͏ॏཁͳ࣮ࣄΛࣔͨ͠3)ɽ

ઁಈڃ਺ͱඇઁಈڃ਺ͷؔ܎Λ໌֬Խ͠ɼਅͷղΛಋग़͢

Δମܥ͸ΤΠϦΞϯղੳ (Alien calculus)ͱݺ͹ΕΔ3, 16, 17)ɽ

্ͷྫΛΤΠϦΞϯղੳͷݴ༿Ͱݟ௚ͯ͠ΈΑ͏ɽ·ͣε

τʔΫεઢΛ·͙ͨ 2ͭͷϘϨϧ࿨Λͭͳ͙࡞܈༻ͱͯ͠ɼ

ετʔΫεࣗݾಉܕSΛఆٛ͢Δɽ

S+ = S− ◦S, S = exp
[
e−z∆

]
(40)

͜͜Ͱɼ∆͸ਖ਼্࣮࣠ t = 1ͷಛҟ఺ʹ͍ͭͯͷΤΠϦΞ

ϯඍ෼ͱݺ͹Εɼަ܎ؔ׵ [e−z∆, ∂σ] = 0Λຬͨ͠ɼτϥ

ϯεڃ਺ ϕ(z;σ)΁ͷ࡞༻͕ҎԼΛ༩͑Δɽ

e−z∆ϕ(z;σ) = s ∂σϕ(z;σ) (41)

͜͜Ͱൺྫ܎਺ͱͯ͠ετʔΫεఆ਺ s ΕΔɽΤΠݱ͕

ϦΞϯඍ෼ͱҰൠͷඍ෼ԋࢉΛ͚ؔͮ܎Δ͜ͷํఔࣜ͸ϒ

Ϧοδํఔࣜͱݺ͹Εɼ྆ลΛൺֱ͢Δ͜ͱͰ∆Φ0 = sͱ

∆e−z = 0͕ಘΒΕΔɽ͜ͷ݁Ռͱ (40)ӈࣜΛ༻͍Δͱ

SΦ0 = Φ0 + se−z, Sϕ(z;σ) = ϕ(z;σ + s) (42)

͕Θ͔Δɽ࠷ऴతʹɼӈࣜ྆ลʹ S−Λ࡞༻ͤ͞ ࣜࠨ(40)

Λ͏࢖ͱ S+ϕ(z;σ) = S−ϕ(z;σ+ s) ͕ಘΒΕɼετʔΫε

଄ͷຊ࣭ΛߏͱΤΠϦΞϯඍ෼͕ϦαʔδΣϯεܕಉݾࣗ

දΘ͍ͯ͠Δ͜ͱ͕Θ͔Δɽ͜͜Ͱॏཁͳ͜ͱ͸ɼʮઁಈڃ

਺͔Βඇઁಈد༩ͷ৘ใΛநग़Մೳʯͱ͍͏఺Ͱ͋Δɽͭ

·Γɼઁಈڃ਺͕׬શʹཧղͰ͖Ε͹ඇઁಈڃ਺͕ಘΒΕɼ
9ඇઢܗ ODEͰ͸͜ͷΑ͏ͳࣜܗతղ͕ແݸݶଘ͠ࡏɼτϥϯεڃ਺

͸ແݸݶͷ߲͔ΒͳΔɽ
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ΔɽE(1)
np ͷ৔߹͸ෆఆੑ͕ͳ͍ͨΊɼO(g)ͷ෦෼Λྵͱ͠

ͯɼγϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔ ∂ϵE|ϵ=1 ͷݫ

ີ݁Ռͷඇઁಈ෦෼Λ׬શʹ͢ݱ࠶ΔɽE(2)
np ͷ O(g)ͷ෦

෼΋ɼෆఆੑ૬ࡴͷཁ੥ʹՃ͑ͯɼجఈঢ়ଶΤωϧΪʔ͕

ωͷؔۮ਺Ͱ͋Δͱ͍͏໛ܕͷੑ࣭Λิ͏ͱ׬શʹܾఆͰ

͖Δɽ͜͏ͯ͠ϦαʔδΣϯεΛ༻͍ͯಋग़ͨ͠׬શͳτ

ϥϯεڃ਺͸ɼγϡϨʔσΟϯΨʔํఔࣜͷີݫղ͔Βಘ

ΒΕΔ 1
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2
ϵE|ϵ=1 Λ׬શʹ͢ݱ࠶Δɽ͜ͷΑ͏ʹɼϦαʔ

δΣϯεཧ࿦ͷਖ਼͚ͩ͠͞Ͱͳ͘ɼͦͷ༗༻ੑ΋͜ͷ໛ܕ

Ͱ͔֬ΊΔ͜ͱ͕Ͱ͖ͨɽ

࣮͸͜͜Ͱѻͬͨ໛ܕ͸ɼ2࣍ݩN = (2, 0)௒ରশCPN−1

γάϚ໛ܕΛίϯύΫτԽ͠12, 13, 14, 15)ɼϑΣϧϛΦϯ਺อ

ଘྔΛݻఆͯ͠ಘΒΕΔྔܥֶྗࢠͷҰྫ (N = 2ͷ৔߹)

Ͱ͋ΔɽචऀΒ͸ɼͦΕΒͷ໛ܕͰશͯͷόΠΦϯղΛٻ

ΊɼͦΕΒʹ෇ਵ͢Δγϯϒϧੵ෼Λ࣮͢ߦΔ͜ͱͰશͯ

ͷόΠΦϯ͔Βͷ४ݹయతد༩ΛٻΊͨ8)ɽͦΕʹରͯ͠

ෆఆੑͷ૬ࡴͱ͍͏ϦαʔδΣϯεཧ࿦͔Βͷཁ੥Λ՝͢

͜ͱʹΑͬͯɼ֤όΠΦϯղ͔Βͷد༩ͱͦͷ·ΘΓͷઁ

ಈڃ਺ϘϨϧ࿨͔Β੒Δ׬શͳτϥϯεڃ਺Λߏ੒͢Δ͜

ͱ͕Ͱ͖Δɽ্هͷΑ͏ʹɼN = 2ͷ৔߹ɼͦͷΑ͏ͳτ

ϥϯεڃ਺͸γϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔີݫ

݁ՌΛ͢ݱ࠶ΔɽҰํͰ N > 2ͷ৔߹͸ɼ൑໌͍ͯ͠Δ

׬Ռ͕Ұ෦Ͱ͋ΔͨΊɼϦαʔδΣϯεͷ݁Ռͱͷ݁ີݫ

શͳൺֱ͸Ͱ͖͍ͯͳ͍ɽ͔͠͠ɼผͷํݟΛ͢Ε͹ɼ্

ͷ݁Ռ͸ɼଞͷख๏Ͱ͸ಘΒΕͳ͍ඇઁಈత෺ཧྔΛܾه

ఆͰ͖Δͱ͍͏ϦαʔδΣϯεཧ࿦ͷ͞ྗڧΛ͍ࣔͯ͠Δɽ

·ͨɼྔࢠ࿦ɼͦΕ΋ ͰܕΔ໛͢܎ؔʹ࿦ࢠ৔ͷྔݩ2࣍

ϦαʔδΣϯεߏ଄͕׬શʹ໌֬Խ͞Εͨͷ͸ॳΊͯͰ͋

ΓɼϦαʔδΣϯεཧ࿦ͷ৔ͷྔࢠ࿦΁ͷԠ༻Մೳੑ͕ߴ

·ͬͨɽ

7. ඍ෼ํఔࣜͰͷϦαʔδΣϯεʹֶͿ

৅ΛΑΓਂ͘ཧղ͢ΔͨΊʹɼৗඍ෼ํఔݱ࿦Ͱͷࢠྔ

ࣜ (ODE)Ͱࣜܗత΂͖ڃ਺ղ͔ΒҰൠͷղΛߏ੒͢Δମ

ܥ (ODEͰͷϦαʔδΣϯεཧ࿦)Λઆ໌͠Α͏3)ɽ؆୯ͳ

ྫͱͯ͠ɼz = ∞ʹෆ֬ఆಛҟ఺Λ࣋ͭৗඍ෼ํఔࣜ

ϕ′(z) + ϕ(z) =
1

z
(37)

Λ͑ߟΔɽࣜܗత΂͖ڃ਺ղΦ0 =
∑∞

n=0 n! z
−n−1 ͷϘϨϧ

ม׵͸ BΦ0[t] =
1

1−t Ͱ༩͑ΒΕɼਖ਼ͷ্࣮࣠ʹಛҟ఺Λ࣋

ͭ8ɽҰൠղ͸ɼύϥϝʔλʔ σ ∈ RΛಋೖͨ͠τϥϯεڃ
਺ϕ(z;σ) = Φ0+σe−z Ͱ༩͑ΒΕɼͦͷϘϨϧ࿨͸ಛҟ఺

Λආ͚ΔඍখҼࢠ ϵΛؚΉԋࢉS±Φ0 ≡
∫∞e±iϵ

0 e−ztBΦ0(t)

8͜͜Ͱɼz ͸ྔֶྗࢠͷ 1/g ʹʹରԠ͢Δͱ͑ࢥ͹ྑ͍ɽ

Λ༻͍ͯ࣍ͷΑ͏ʹදΘͤΔ9ɽ

S±ϕ(z;σ) = S±Φ0(z) + σe−z. (38)

͜͜Ͱ͸ڥք৚݅ΛఆΊͯσΛܾΊͨͱ͠Α͏ɽͱ͜Ζ͕ɼ

ม਺ z = |z|eiθ͕ετʔΫεઢ θ = 0Λԣ੾Δࡍʹͦͷ઴ۙ

ΔͨΊɼղΛ༩͖͑ى৅͕ݱมԽ͢ΔετʔΫεʹܹٸ͕ܗ

Δσͷ஋͕ετʔΫεఆ਺ s = 2πiͷ෼͚ͩෆ࿈ଓʹมԽ͢

ΔɽϘϨϧ࿨ S±ʹؚ·ΕΔ±ϵ ͸ θͷඍখมԽͱಉ౳ͳͷ

ͰɼετʔΫεઢ θ = 0্Ͱ͸ S+ϕ(z;σ) → S−ϕ(z;σ+ s)

ͷΑ͏ͳ௓ͼ͕ੜ͡Δ͜ͱʹͳΔɽͦͷ݁Ռɼղͷ࿈ଓੑ

S+ϕ(z;σ) = S−ϕ(z;σ + s)͔Βɼ

S+Φ0(z)− S−Φ0(z) = 2πie−z (39)

ͱ͍͏͕ؔ܎ಘΒΕΔɽ͜ͷΑ͏ʹৗඍ෼ํఔࣜʹ͓͍ͯ

͸ɼ“ઁಈత”ͳ΂͖ڃ਺ Φ0 ͷϘϨϧ࿨͕ e−z ΛؚΉ “ඇ

ઁಈత”د༩ͱؔ܎෇͍͍ͯΔɽΤΧʔϧ (Ecalle)͸ඇઢܗ

ͳ৔߹ΛؚΉҰൠͷ ODEʹ͓͍ͯ΋ʮద੾ͳ਺ͷτϥϯ

εڃ਺ύϥϝʔλʔΛಋೖ͢Δ͜ͱͰɼৗඍ෼ํఔࣜͷղ

͕͜ͷΑ͏ͳࣜܗతղͷτϥϯεڃ਺ͱͯ͠ॻ͚Δʯͱ͍

͏ॏཁͳ࣮ࣄΛࣔͨ͠3)ɽ

ઁಈڃ਺ͱඇઁಈڃ਺ͷؔ܎Λ໌֬Խ͠ɼਅͷղΛಋग़͢

Δମܥ͸ΤΠϦΞϯղੳ (Alien calculus)ͱݺ͹ΕΔ3, 16, 17)ɽ

্ͷྫΛΤΠϦΞϯղੳͷݴ༿Ͱݟ௚ͯ͠ΈΑ͏ɽ·ͣε

τʔΫεઢΛ·͙ͨ 2ͭͷϘϨϧ࿨Λͭͳ͙࡞܈༻ͱͯ͠ɼ

ετʔΫεࣗݾಉܕSΛఆٛ͢Δɽ

S+ = S− ◦S, S = exp
[
e−z∆

]
(40)

͜͜Ͱɼ∆͸ਖ਼্࣮࣠ t = 1ͷಛҟ఺ʹ͍ͭͯͷΤΠϦΞ

ϯඍ෼ͱݺ͹Εɼަ܎ؔ׵ [e−z∆, ∂σ] = 0Λຬͨ͠ɼτϥ

ϯεڃ਺ ϕ(z;σ)΁ͷ࡞༻͕ҎԼΛ༩͑Δɽ

e−z∆ϕ(z;σ) = s ∂σϕ(z;σ) (41)

͜͜Ͱൺྫ܎਺ͱͯ͠ετʔΫεఆ਺ s ΕΔɽΤΠݱ͕

ϦΞϯඍ෼ͱҰൠͷඍ෼ԋࢉΛ͚ؔͮ܎Δ͜ͷํఔࣜ͸ϒ

Ϧοδํఔࣜͱݺ͹Εɼ྆ลΛൺֱ͢Δ͜ͱͰ∆Φ0 = sͱ

∆e−z = 0͕ಘΒΕΔɽ͜ͷ݁Ռͱ (40)ӈࣜΛ༻͍Δͱ

SΦ0 = Φ0 + se−z, Sϕ(z;σ) = ϕ(z;σ + s) (42)

͕Θ͔Δɽ࠷ऴతʹɼӈࣜ྆ลʹ S−Λ࡞༻ͤ͞ ࣜࠨ(40)

Λ͏࢖ͱ S+ϕ(z;σ) = S−ϕ(z;σ+ s) ͕ಘΒΕɼετʔΫε

଄ͷຊ࣭ΛߏͱΤΠϦΞϯඍ෼͕ϦαʔδΣϯεܕಉݾࣗ

දΘ͍ͯ͠Δ͜ͱ͕Θ͔Δɽ͜͜Ͱॏཁͳ͜ͱ͸ɼʮઁಈڃ

਺͔Βඇઁಈد༩ͷ৘ใΛநग़Մೳʯͱ͍͏఺Ͱ͋Δɽͭ

·Γɼઁಈڃ਺͕׬શʹཧղͰ͖Ε͹ඇઁಈڃ਺͕ಘΒΕɼ
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np ͷ৔߹͸ෆఆੑ͕ͳ͍ͨΊɼO(g)ͷ෦෼Λྵͱ͠

ͯɼγϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔ ∂ϵE|ϵ=1 ͷݫ

ີ݁Ռͷඇઁಈ෦෼Λ׬શʹ͢ݱ࠶ΔɽE(2)
np ͷ O(g)ͷ෦

෼΋ɼෆఆੑ૬ࡴͷཁ੥ʹՃ͑ͯɼجఈঢ়ଶΤωϧΪʔ͕

ωͷؔۮ਺Ͱ͋Δͱ͍͏໛ܕͷੑ࣭Λิ͏ͱ׬શʹܾఆͰ

͖Δɽ͜͏ͯ͠ϦαʔδΣϯεΛ༻͍ͯಋग़ͨ͠׬શͳτ

ϥϯεڃ਺͸ɼγϡϨʔσΟϯΨʔํఔࣜͷີݫղ͔Βಘ

ΒΕΔ 1
2∂

2
ϵE|ϵ=1 Λ׬શʹ͢ݱ࠶Δɽ͜ͷΑ͏ʹɼϦαʔ

δΣϯεཧ࿦ͷਖ਼͚ͩ͠͞Ͱͳ͘ɼͦͷ༗༻ੑ΋͜ͷ໛ܕ

Ͱ͔֬ΊΔ͜ͱ͕Ͱ͖ͨɽ

࣮͸͜͜Ͱѻͬͨ໛ܕ͸ɼ2࣍ݩN = (2, 0)௒ରশCPN−1

γάϚ໛ܕΛίϯύΫτԽ͠12, 13, 14, 15)ɼϑΣϧϛΦϯ਺อ

ଘྔΛݻఆͯ͠ಘΒΕΔྔܥֶྗࢠͷҰྫ (N = 2ͷ৔߹)

Ͱ͋ΔɽචऀΒ͸ɼͦΕΒͷ໛ܕͰશͯͷόΠΦϯղΛٻ

ΊɼͦΕΒʹ෇ਵ͢Δγϯϒϧੵ෼Λ࣮͢ߦΔ͜ͱͰશͯ

ͷόΠΦϯ͔Βͷ४ݹయతد༩ΛٻΊͨ8)ɽͦΕʹରͯ͠

ෆఆੑͷ૬ࡴͱ͍͏ϦαʔδΣϯεཧ࿦͔Βͷཁ੥Λ՝͢

͜ͱʹΑͬͯɼ֤όΠΦϯղ͔Βͷد༩ͱͦͷ·ΘΓͷઁ

ಈڃ਺ϘϨϧ࿨͔Β੒Δ׬શͳτϥϯεڃ਺Λߏ੒͢Δ͜

ͱ͕Ͱ͖Δɽ্هͷΑ͏ʹɼN = 2ͷ৔߹ɼͦͷΑ͏ͳτ

ϥϯεڃ਺͸γϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔີݫ

݁ՌΛ͢ݱ࠶ΔɽҰํͰ N > 2ͷ৔߹͸ɼ൑໌͍ͯ͠Δ

׬Ռ͕Ұ෦Ͱ͋ΔͨΊɼϦαʔδΣϯεͷ݁Ռͱͷ݁ີݫ

શͳൺֱ͸Ͱ͖͍ͯͳ͍ɽ͔͠͠ɼผͷํݟΛ͢Ε͹ɼ্

ͷ݁Ռ͸ɼଞͷख๏Ͱ͸ಘΒΕͳ͍ඇઁಈత෺ཧྔΛܾه

ఆͰ͖Δͱ͍͏ϦαʔδΣϯεཧ࿦ͷ͞ྗڧΛ͍ࣔͯ͠Δɽ

·ͨɼྔࢠ࿦ɼͦΕ΋ ͰܕΔ໛͢܎ؔʹ࿦ࢠ৔ͷྔݩ2࣍

ϦαʔδΣϯεߏ଄͕׬શʹ໌֬Խ͞Εͨͷ͸ॳΊͯͰ͋

ΓɼϦαʔδΣϯεཧ࿦ͷ৔ͷྔࢠ࿦΁ͷԠ༻Մೳੑ͕ߴ

·ͬͨɽ

7. ඍ෼ํఔࣜͰͷϦαʔδΣϯεʹֶͿ

৅ΛΑΓਂ͘ཧղ͢ΔͨΊʹɼৗඍ෼ํఔݱ࿦Ͱͷࢠྔ

ࣜ (ODE)Ͱࣜܗత΂͖ڃ਺ղ͔ΒҰൠͷղΛߏ੒͢Δମ

ܥ (ODEͰͷϦαʔδΣϯεཧ࿦)Λઆ໌͠Α͏3)ɽ؆୯ͳ

ྫͱͯ͠ɼz = ∞ʹෆ֬ఆಛҟ఺Λ࣋ͭৗඍ෼ํఔࣜ

ϕ′(z) + ϕ(z) =
1

z
(37)

Λ͑ߟΔɽࣜܗత΂͖ڃ਺ղΦ0 =
∑∞

n=0 n! z
−n−1 ͷϘϨϧ

ม׵͸ BΦ0[t] =
1

1−t Ͱ༩͑ΒΕɼਖ਼ͷ্࣮࣠ʹಛҟ఺Λ࣋

ͭ8ɽҰൠղ͸ɼύϥϝʔλʔ σ ∈ RΛಋೖͨ͠τϥϯεڃ
਺ϕ(z;σ) = Φ0+σe−z Ͱ༩͑ΒΕɼͦͷϘϨϧ࿨͸ಛҟ఺

Λආ͚ΔඍখҼࢠ ϵΛؚΉԋࢉS±Φ0 ≡
∫∞e±iϵ

0 e−ztBΦ0(t)

8͜͜Ͱɼz ͸ྔֶྗࢠͷ 1/g ʹʹରԠ͢Δͱ͑ࢥ͹ྑ͍ɽ

Λ༻͍ͯ࣍ͷΑ͏ʹදΘͤΔ9ɽ

S±ϕ(z;σ) = S±Φ0(z) + σe−z. (38)

͜͜Ͱ͸ڥք৚݅ΛఆΊͯσΛܾΊͨͱ͠Α͏ɽͱ͜Ζ͕ɼ

ม਺ z = |z|eiθ͕ετʔΫεઢ θ = 0Λԣ੾Δࡍʹͦͷ઴ۙ

ΔͨΊɼղΛ༩͖͑ى৅͕ݱมԽ͢ΔετʔΫεʹܹٸ͕ܗ

Δσͷ஋͕ετʔΫεఆ਺ s = 2πiͷ෼͚ͩෆ࿈ଓʹมԽ͢

ΔɽϘϨϧ࿨ S±ʹؚ·ΕΔ±ϵ ͸ θͷඍখมԽͱಉ౳ͳͷ

ͰɼετʔΫεઢ θ = 0্Ͱ͸ S+ϕ(z;σ) → S−ϕ(z;σ+ s)

ͷΑ͏ͳ௓ͼ͕ੜ͡Δ͜ͱʹͳΔɽͦͷ݁Ռɼղͷ࿈ଓੑ

S+ϕ(z;σ) = S−ϕ(z;σ + s)͔Βɼ

S+Φ0(z)− S−Φ0(z) = 2πie−z (39)

ͱ͍͏͕ؔ܎ಘΒΕΔɽ͜ͷΑ͏ʹৗඍ෼ํఔࣜʹ͓͍ͯ

͸ɼ“ઁಈత”ͳ΂͖ڃ਺ Φ0 ͷϘϨϧ࿨͕ e−z ΛؚΉ “ඇ

ઁಈత”د༩ͱؔ܎෇͍͍ͯΔɽΤΧʔϧ (Ecalle)͸ඇઢܗ

ͳ৔߹ΛؚΉҰൠͷ ODEʹ͓͍ͯ΋ʮద੾ͳ਺ͷτϥϯ

εڃ਺ύϥϝʔλʔΛಋೖ͢Δ͜ͱͰɼৗඍ෼ํఔࣜͷղ

͕͜ͷΑ͏ͳࣜܗతղͷτϥϯεڃ਺ͱͯ͠ॻ͚Δʯͱ͍

͏ॏཁͳ࣮ࣄΛࣔͨ͠3)ɽ

ઁಈڃ਺ͱඇઁಈڃ਺ͷؔ܎Λ໌֬Խ͠ɼਅͷղΛಋग़͢

Δମܥ͸ΤΠϦΞϯղੳ (Alien calculus)ͱݺ͹ΕΔ3, 16, 17)ɽ

্ͷྫΛΤΠϦΞϯղੳͷݴ༿Ͱݟ௚ͯ͠ΈΑ͏ɽ·ͣε

τʔΫεઢΛ·͙ͨ 2ͭͷϘϨϧ࿨Λͭͳ͙࡞܈༻ͱͯ͠ɼ

ετʔΫεࣗݾಉܕSΛఆٛ͢Δɽ

S+ = S− ◦S, S = exp
[
e−z∆

]
(40)

͜͜Ͱɼ∆͸ਖ਼্࣮࣠ t = 1ͷಛҟ఺ʹ͍ͭͯͷΤΠϦΞ

ϯඍ෼ͱݺ͹Εɼަ܎ؔ׵ [e−z∆, ∂σ] = 0Λຬͨ͠ɼτϥ

ϯεڃ਺ ϕ(z;σ)΁ͷ࡞༻͕ҎԼΛ༩͑Δɽ

e−z∆ϕ(z;σ) = s ∂σϕ(z;σ) (41)

͜͜Ͱൺྫ܎਺ͱͯ͠ετʔΫεఆ਺ s ΕΔɽΤΠݱ͕

ϦΞϯඍ෼ͱҰൠͷඍ෼ԋࢉΛ͚ؔͮ܎Δ͜ͷํఔࣜ͸ϒ

Ϧοδํఔࣜͱݺ͹Εɼ྆ลΛൺֱ͢Δ͜ͱͰ∆Φ0 = sͱ

∆e−z = 0͕ಘΒΕΔɽ͜ͷ݁Ռͱ (40)ӈࣜΛ༻͍Δͱ

SΦ0 = Φ0 + se−z, Sϕ(z;σ) = ϕ(z;σ + s) (42)

͕Θ͔Δɽ࠷ऴతʹɼӈࣜ྆ลʹ S−Λ࡞༻ͤ͞ ࣜࠨ(40)

Λ͏࢖ͱ S+ϕ(z;σ) = S−ϕ(z;σ+ s) ͕ಘΒΕɼετʔΫε

଄ͷຊ࣭ΛߏͱΤΠϦΞϯඍ෼͕ϦαʔδΣϯεܕಉݾࣗ

දΘ͍ͯ͠Δ͜ͱ͕Θ͔Δɽ͜͜Ͱॏཁͳ͜ͱ͸ɼʮઁಈڃ

਺͔Βඇઁಈد༩ͷ৘ใΛநग़Մೳʯͱ͍͏఺Ͱ͋Δɽͭ

·Γɼઁಈڃ਺͕׬શʹཧղͰ͖Ε͹ඇઁಈڃ਺͕ಘΒΕɼ
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ΔɽE(1)
np ͷ৔߹͸ෆఆੑ͕ͳ͍ͨΊɼO(g)ͷ෦෼Λྵͱ͠

ͯɼγϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔ ∂ϵE|ϵ=1 ͷݫ

ີ݁Ռͷඇઁಈ෦෼Λ׬શʹ͢ݱ࠶ΔɽE(2)
np ͷ O(g)ͷ෦

෼΋ɼෆఆੑ૬ࡴͷཁ੥ʹՃ͑ͯɼجఈঢ়ଶΤωϧΪʔ͕

ωͷؔۮ਺Ͱ͋Δͱ͍͏໛ܕͷੑ࣭Λิ͏ͱ׬શʹܾఆͰ

͖Δɽ͜͏ͯ͠ϦαʔδΣϯεΛ༻͍ͯಋग़ͨ͠׬શͳτ

ϥϯεڃ਺͸ɼγϡϨʔσΟϯΨʔํఔࣜͷີݫղ͔Βಘ

ΒΕΔ 1
2∂

2
ϵE|ϵ=1 Λ׬શʹ͢ݱ࠶Δɽ͜ͷΑ͏ʹɼϦαʔ

δΣϯεཧ࿦ͷਖ਼͚ͩ͠͞Ͱͳ͘ɼͦͷ༗༻ੑ΋͜ͷ໛ܕ

Ͱ͔֬ΊΔ͜ͱ͕Ͱ͖ͨɽ

࣮͸͜͜Ͱѻͬͨ໛ܕ͸ɼ2࣍ݩN = (2, 0)௒ରশCPN−1

γάϚ໛ܕΛίϯύΫτԽ͠12, 13, 14, 15)ɼϑΣϧϛΦϯ਺อ

ଘྔΛݻఆͯ͠ಘΒΕΔྔܥֶྗࢠͷҰྫ (N = 2ͷ৔߹)

Ͱ͋ΔɽචऀΒ͸ɼͦΕΒͷ໛ܕͰશͯͷόΠΦϯղΛٻ

ΊɼͦΕΒʹ෇ਵ͢Δγϯϒϧੵ෼Λ࣮͢ߦΔ͜ͱͰશͯ

ͷόΠΦϯ͔Βͷ४ݹయతد༩ΛٻΊͨ8)ɽͦΕʹରͯ͠

ෆఆੑͷ૬ࡴͱ͍͏ϦαʔδΣϯεཧ࿦͔Βͷཁ੥Λ՝͢

͜ͱʹΑͬͯɼ֤όΠΦϯղ͔Βͷد༩ͱͦͷ·ΘΓͷઁ

ಈڃ਺ϘϨϧ࿨͔Β੒Δ׬શͳτϥϯεڃ਺Λߏ੒͢Δ͜

ͱ͕Ͱ͖Δɽ্هͷΑ͏ʹɼN = 2ͷ৔߹ɼͦͷΑ͏ͳτ

ϥϯεڃ਺͸γϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔີݫ

݁ՌΛ͢ݱ࠶ΔɽҰํͰ N > 2ͷ৔߹͸ɼ൑໌͍ͯ͠Δ

׬Ռ͕Ұ෦Ͱ͋ΔͨΊɼϦαʔδΣϯεͷ݁Ռͱͷ݁ີݫ

શͳൺֱ͸Ͱ͖͍ͯͳ͍ɽ͔͠͠ɼผͷํݟΛ͢Ε͹ɼ্

ͷ݁Ռ͸ɼଞͷख๏Ͱ͸ಘΒΕͳ͍ඇઁಈత෺ཧྔΛܾه

ఆͰ͖Δͱ͍͏ϦαʔδΣϯεཧ࿦ͷ͞ྗڧΛ͍ࣔͯ͠Δɽ

·ͨɼྔࢠ࿦ɼͦΕ΋ ͰܕΔ໛͢܎ؔʹ࿦ࢠ৔ͷྔݩ2࣍

ϦαʔδΣϯεߏ଄͕׬શʹ໌֬Խ͞Εͨͷ͸ॳΊͯͰ͋

ΓɼϦαʔδΣϯεཧ࿦ͷ৔ͷྔࢠ࿦΁ͷԠ༻Մೳੑ͕ߴ

·ͬͨɽ

7. ඍ෼ํఔࣜͰͷϦαʔδΣϯεʹֶͿ

৅ΛΑΓਂ͘ཧղ͢ΔͨΊʹɼৗඍ෼ํఔݱ࿦Ͱͷࢠྔ

ࣜ (ODE)Ͱࣜܗత΂͖ڃ਺ղ͔ΒҰൠͷղΛߏ੒͢Δମ

ܥ (ODEͰͷϦαʔδΣϯεཧ࿦)Λઆ໌͠Α͏3)ɽ؆୯ͳ

ྫͱͯ͠ɼz = ∞ʹෆ֬ఆಛҟ఺Λ࣋ͭৗඍ෼ํఔࣜ

ϕ′(z) + ϕ(z) =
1

z
(37)

Λ͑ߟΔɽࣜܗత΂͖ڃ਺ղΦ0 =
∑∞

n=0 n! z
−n−1 ͷϘϨϧ

ม׵͸ BΦ0[t] =
1

1−t Ͱ༩͑ΒΕɼਖ਼ͷ্࣮࣠ʹಛҟ఺Λ࣋

ͭ8ɽҰൠղ͸ɼύϥϝʔλʔ σ ∈ RΛಋೖͨ͠τϥϯεڃ
਺ϕ(z;σ) = Φ0+σe−z Ͱ༩͑ΒΕɼͦͷϘϨϧ࿨͸ಛҟ఺

Λආ͚ΔඍখҼࢠ ϵΛؚΉԋࢉS±Φ0 ≡
∫∞e±iϵ

0 e−ztBΦ0(t)

8͜͜Ͱɼz ͸ྔֶྗࢠͷ 1/g ʹʹରԠ͢Δͱ͑ࢥ͹ྑ͍ɽ

Λ༻͍ͯ࣍ͷΑ͏ʹදΘͤΔ9ɽ

S±ϕ(z;σ) = S±Φ0(z) + σe−z. (38)

͜͜Ͱ͸ڥք৚݅ΛఆΊͯσΛܾΊͨͱ͠Α͏ɽͱ͜Ζ͕ɼ

ม਺ z = |z|eiθ͕ετʔΫεઢ θ = 0Λԣ੾Δࡍʹͦͷ઴ۙ

ΔͨΊɼղΛ༩͖͑ى৅͕ݱมԽ͢ΔετʔΫεʹܹٸ͕ܗ

Δσͷ஋͕ετʔΫεఆ਺ s = 2πiͷ෼͚ͩෆ࿈ଓʹมԽ͢

ΔɽϘϨϧ࿨ S±ʹؚ·ΕΔ±ϵ ͸ θͷඍখมԽͱಉ౳ͳͷ

ͰɼετʔΫεઢ θ = 0্Ͱ͸ S+ϕ(z;σ) → S−ϕ(z;σ+ s)

ͷΑ͏ͳ௓ͼ͕ੜ͡Δ͜ͱʹͳΔɽͦͷ݁Ռɼղͷ࿈ଓੑ

S+ϕ(z;σ) = S−ϕ(z;σ + s)͔Βɼ

S+Φ0(z)− S−Φ0(z) = 2πie−z (39)

ͱ͍͏͕ؔ܎ಘΒΕΔɽ͜ͷΑ͏ʹৗඍ෼ํఔࣜʹ͓͍ͯ

͸ɼ“ઁಈత”ͳ΂͖ڃ਺ Φ0 ͷϘϨϧ࿨͕ e−z ΛؚΉ “ඇ

ઁಈత”د༩ͱؔ܎෇͍͍ͯΔɽΤΧʔϧ (Ecalle)͸ඇઢܗ

ͳ৔߹ΛؚΉҰൠͷ ODEʹ͓͍ͯ΋ʮద੾ͳ਺ͷτϥϯ

εڃ਺ύϥϝʔλʔΛಋೖ͢Δ͜ͱͰɼৗඍ෼ํఔࣜͷղ

͕͜ͷΑ͏ͳࣜܗతղͷτϥϯεڃ਺ͱͯ͠ॻ͚Δʯͱ͍

͏ॏཁͳ࣮ࣄΛࣔͨ͠3)ɽ

ઁಈڃ਺ͱඇઁಈڃ਺ͷؔ܎Λ໌֬Խ͠ɼਅͷղΛಋग़͢

Δମܥ͸ΤΠϦΞϯղੳ (Alien calculus)ͱݺ͹ΕΔ3, 16, 17)ɽ

্ͷྫΛΤΠϦΞϯղੳͷݴ༿Ͱݟ௚ͯ͠ΈΑ͏ɽ·ͣε

τʔΫεઢΛ·͙ͨ 2ͭͷϘϨϧ࿨Λͭͳ͙࡞܈༻ͱͯ͠ɼ

ετʔΫεࣗݾಉܕSΛఆٛ͢Δɽ

S+ = S− ◦S, S = exp
[
e−z∆

]
(40)

͜͜Ͱɼ∆͸ਖ਼্࣮࣠ t = 1ͷಛҟ఺ʹ͍ͭͯͷΤΠϦΞ

ϯඍ෼ͱݺ͹Εɼަ܎ؔ׵ [e−z∆, ∂σ] = 0Λຬͨ͠ɼτϥ

ϯεڃ਺ ϕ(z;σ)΁ͷ࡞༻͕ҎԼΛ༩͑Δɽ

e−z∆ϕ(z;σ) = s ∂σϕ(z;σ) (41)

͜͜Ͱൺྫ܎਺ͱͯ͠ετʔΫεఆ਺ s ΕΔɽΤΠݱ͕

ϦΞϯඍ෼ͱҰൠͷඍ෼ԋࢉΛ͚ؔͮ܎Δ͜ͷํఔࣜ͸ϒ

Ϧοδํఔࣜͱݺ͹Εɼ྆ลΛൺֱ͢Δ͜ͱͰ∆Φ0 = sͱ

∆e−z = 0͕ಘΒΕΔɽ͜ͷ݁Ռͱ (40)ӈࣜΛ༻͍Δͱ

SΦ0 = Φ0 + se−z, Sϕ(z;σ) = ϕ(z;σ + s) (42)

͕Θ͔Δɽ࠷ऴతʹɼӈࣜ྆ลʹ S−Λ࡞༻ͤ͞ ࣜࠨ(40)

Λ͏࢖ͱ S+ϕ(z;σ) = S−ϕ(z;σ+ s) ͕ಘΒΕɼετʔΫε

଄ͷຊ࣭ΛߏͱΤΠϦΞϯඍ෼͕ϦαʔδΣϯεܕಉݾࣗ

දΘ͍ͯ͠Δ͜ͱ͕Θ͔Δɽ͜͜Ͱॏཁͳ͜ͱ͸ɼʮઁಈڃ

਺͔Βඇઁಈد༩ͷ৘ใΛநग़Մೳʯͱ͍͏఺Ͱ͋Δɽͭ

·Γɼઁಈڃ਺͕׬શʹཧղͰ͖Ε͹ඇઁಈڃ਺͕ಘΒΕɼ
9ඇઢܗ ODEͰ͸͜ͷΑ͏ͳࣜܗతղ͕ແݸݶଘ͠ࡏɼτϥϯεڃ਺

͸ແݸݶͷ߲͔ΒͳΔɽ
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ΔɽE(1)
np ͷ৔߹͸ෆఆੑ͕ͳ͍ͨΊɼO(g)ͷ෦෼Λྵͱ͠

ͯɼγϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔ ∂ϵE|ϵ=1 ͷݫ

ີ݁Ռͷඇઁಈ෦෼Λ׬શʹ͢ݱ࠶ΔɽE(2)
np ͷ O(g)ͷ෦

෼΋ɼෆఆੑ૬ࡴͷཁ੥ʹՃ͑ͯɼجఈঢ়ଶΤωϧΪʔ͕

ωͷؔۮ਺Ͱ͋Δͱ͍͏໛ܕͷੑ࣭Λิ͏ͱ׬શʹܾఆͰ

͖Δɽ͜͏ͯ͠ϦαʔδΣϯεΛ༻͍ͯಋग़ͨ͠׬શͳτ

ϥϯεڃ਺͸ɼγϡϨʔσΟϯΨʔํఔࣜͷີݫղ͔Βಘ

ΒΕΔ 1
2∂

2
ϵE|ϵ=1 Λ׬શʹ͢ݱ࠶Δɽ͜ͷΑ͏ʹɼϦαʔ

δΣϯεཧ࿦ͷਖ਼͚ͩ͠͞Ͱͳ͘ɼͦͷ༗༻ੑ΋͜ͷ໛ܕ

Ͱ͔֬ΊΔ͜ͱ͕Ͱ͖ͨɽ

࣮͸͜͜Ͱѻͬͨ໛ܕ͸ɼ2࣍ݩN = (2, 0)௒ରশCPN−1

γάϚ໛ܕΛίϯύΫτԽ͠12, 13, 14, 15)ɼϑΣϧϛΦϯ਺อ

ଘྔΛݻఆͯ͠ಘΒΕΔྔܥֶྗࢠͷҰྫ (N = 2ͷ৔߹)

Ͱ͋ΔɽචऀΒ͸ɼͦΕΒͷ໛ܕͰશͯͷόΠΦϯղΛٻ

ΊɼͦΕΒʹ෇ਵ͢Δγϯϒϧੵ෼Λ࣮͢ߦΔ͜ͱͰશͯ

ͷόΠΦϯ͔Βͷ४ݹయతد༩ΛٻΊͨ8)ɽͦΕʹରͯ͠

ෆఆੑͷ૬ࡴͱ͍͏ϦαʔδΣϯεཧ࿦͔Βͷཁ੥Λ՝͢

͜ͱʹΑͬͯɼ֤όΠΦϯղ͔Βͷد༩ͱͦͷ·ΘΓͷઁ

ಈڃ਺ϘϨϧ࿨͔Β੒Δ׬શͳτϥϯεڃ਺Λߏ੒͢Δ͜

ͱ͕Ͱ͖Δɽ্هͷΑ͏ʹɼN = 2ͷ৔߹ɼͦͷΑ͏ͳτ

ϥϯεڃ਺͸γϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔີݫ

݁ՌΛ͢ݱ࠶ΔɽҰํͰ N > 2ͷ৔߹͸ɼ൑໌͍ͯ͠Δ

׬Ռ͕Ұ෦Ͱ͋ΔͨΊɼϦαʔδΣϯεͷ݁Ռͱͷ݁ີݫ

શͳൺֱ͸Ͱ͖͍ͯͳ͍ɽ͔͠͠ɼผͷํݟΛ͢Ε͹ɼ্

ͷ݁Ռ͸ɼଞͷख๏Ͱ͸ಘΒΕͳ͍ඇઁಈత෺ཧྔΛܾه

ఆͰ͖Δͱ͍͏ϦαʔδΣϯεཧ࿦ͷ͞ྗڧΛ͍ࣔͯ͠Δɽ

·ͨɼྔࢠ࿦ɼͦΕ΋ ͰܕΔ໛͢܎ؔʹ࿦ࢠ৔ͷྔݩ2࣍

ϦαʔδΣϯεߏ଄͕׬શʹ໌֬Խ͞Εͨͷ͸ॳΊͯͰ͋

ΓɼϦαʔδΣϯεཧ࿦ͷ৔ͷྔࢠ࿦΁ͷԠ༻Մೳੑ͕ߴ

·ͬͨɽ

7. ඍ෼ํఔࣜͰͷϦαʔδΣϯεʹֶͿ

৅ΛΑΓਂ͘ཧղ͢ΔͨΊʹɼৗඍ෼ํఔݱ࿦Ͱͷࢠྔ

ࣜ (ODE)Ͱࣜܗత΂͖ڃ਺ղ͔ΒҰൠͷղΛߏ੒͢Δମ

ܥ (ODEͰͷϦαʔδΣϯεཧ࿦)Λઆ໌͠Α͏3)ɽ؆୯ͳ

ྫͱͯ͠ɼz = ∞ʹෆ֬ఆಛҟ఺Λ࣋ͭৗඍ෼ํఔࣜ

ϕ′(z) + ϕ(z) =
1

z
(37)

Λ͑ߟΔɽࣜܗత΂͖ڃ਺ղΦ0 =
∑∞

n=0 n! z
−n−1 ͷϘϨϧ

ม׵͸ BΦ0[t] =
1

1−t Ͱ༩͑ΒΕɼਖ਼ͷ্࣮࣠ʹಛҟ఺Λ࣋

ͭ8ɽҰൠղ͸ɼύϥϝʔλʔ σ ∈ RΛಋೖͨ͠τϥϯεڃ
਺ϕ(z;σ) = Φ0+σe−z Ͱ༩͑ΒΕɼͦͷϘϨϧ࿨͸ಛҟ఺

Λආ͚ΔඍখҼࢠ ϵΛؚΉԋࢉS±Φ0 ≡
∫∞e±iϵ

0 e−ztBΦ0(t)

8͜͜Ͱɼz ͸ྔֶྗࢠͷ 1/g ʹʹରԠ͢Δͱ͑ࢥ͹ྑ͍ɽ

Λ༻͍ͯ࣍ͷΑ͏ʹදΘͤΔ9ɽ

S±ϕ(z;σ) = S±Φ0(z) + σe−z. (38)

͜͜Ͱ͸ڥք৚݅ΛఆΊͯσΛܾΊͨͱ͠Α͏ɽͱ͜Ζ͕ɼ

ม਺ z = |z|eiθ͕ετʔΫεઢ θ = 0Λԣ੾Δࡍʹͦͷ઴ۙ

ΔͨΊɼղΛ༩͖͑ى৅͕ݱมԽ͢ΔετʔΫεʹܹٸ͕ܗ

Δσͷ஋͕ετʔΫεఆ਺ s = 2πiͷ෼͚ͩෆ࿈ଓʹมԽ͢

ΔɽϘϨϧ࿨ S±ʹؚ·ΕΔ±ϵ ͸ θͷඍখมԽͱಉ౳ͳͷ

ͰɼετʔΫεઢ θ = 0্Ͱ͸ S+ϕ(z;σ) → S−ϕ(z;σ+ s)

ͷΑ͏ͳ௓ͼ͕ੜ͡Δ͜ͱʹͳΔɽͦͷ݁Ռɼղͷ࿈ଓੑ

S+ϕ(z;σ) = S−ϕ(z;σ + s)͔Βɼ

S+Φ0(z)− S−Φ0(z) = 2πie−z (39)

ͱ͍͏͕ؔ܎ಘΒΕΔɽ͜ͷΑ͏ʹৗඍ෼ํఔࣜʹ͓͍ͯ

͸ɼ“ઁಈత”ͳ΂͖ڃ਺ Φ0 ͷϘϨϧ࿨͕ e−z ΛؚΉ “ඇ

ઁಈత”د༩ͱؔ܎෇͍͍ͯΔɽΤΧʔϧ (Ecalle)͸ඇઢܗ

ͳ৔߹ΛؚΉҰൠͷ ODEʹ͓͍ͯ΋ʮద੾ͳ਺ͷτϥϯ

εڃ਺ύϥϝʔλʔΛಋೖ͢Δ͜ͱͰɼৗඍ෼ํఔࣜͷղ

͕͜ͷΑ͏ͳࣜܗతղͷτϥϯεڃ਺ͱͯ͠ॻ͚Δʯͱ͍

͏ॏཁͳ࣮ࣄΛࣔͨ͠3)ɽ

ઁಈڃ਺ͱඇઁಈڃ਺ͷؔ܎Λ໌֬Խ͠ɼਅͷղΛಋग़͢

Δମܥ͸ΤΠϦΞϯղੳ (Alien calculus)ͱݺ͹ΕΔ3, 16, 17)ɽ

্ͷྫΛΤΠϦΞϯղੳͷݴ༿Ͱݟ௚ͯ͠ΈΑ͏ɽ·ͣε

τʔΫεઢΛ·͙ͨ 2ͭͷϘϨϧ࿨Λͭͳ͙࡞܈༻ͱͯ͠ɼ

ετʔΫεࣗݾಉܕSΛఆٛ͢Δɽ

S+ = S− ◦S, S = exp
[
e−z∆

]
(40)

͜͜Ͱɼ∆͸ਖ਼্࣮࣠ t = 1ͷಛҟ఺ʹ͍ͭͯͷΤΠϦΞ

ϯඍ෼ͱݺ͹Εɼަ܎ؔ׵ [e−z∆, ∂σ] = 0Λຬͨ͠ɼτϥ

ϯεڃ਺ ϕ(z;σ)΁ͷ࡞༻͕ҎԼΛ༩͑Δɽ

e−z∆ϕ(z;σ) = s ∂σϕ(z;σ) (41)

͜͜Ͱൺྫ܎਺ͱͯ͠ετʔΫεఆ਺ s ΕΔɽΤΠݱ͕

ϦΞϯඍ෼ͱҰൠͷඍ෼ԋࢉΛ͚ؔͮ܎Δ͜ͷํఔࣜ͸ϒ

Ϧοδํఔࣜͱݺ͹Εɼ྆ลΛൺֱ͢Δ͜ͱͰ∆Φ0 = sͱ

∆e−z = 0͕ಘΒΕΔɽ͜ͷ݁Ռͱ (40)ӈࣜΛ༻͍Δͱ

SΦ0 = Φ0 + se−z, Sϕ(z;σ) = ϕ(z;σ + s) (42)

͕Θ͔Δɽ࠷ऴతʹɼӈࣜ྆ลʹ S−Λ࡞༻ͤ͞ ࣜࠨ(40)

Λ͏࢖ͱ S+ϕ(z;σ) = S−ϕ(z;σ+ s) ͕ಘΒΕɼετʔΫε

଄ͷຊ࣭ΛߏͱΤΠϦΞϯඍ෼͕ϦαʔδΣϯεܕಉݾࣗ

දΘ͍ͯ͠Δ͜ͱ͕Θ͔Δɽ͜͜Ͱॏཁͳ͜ͱ͸ɼʮઁಈڃ

਺͔Βඇઁಈد༩ͷ৘ใΛநग़Մೳʯͱ͍͏఺Ͱ͋Δɽͭ

·Γɼઁಈڃ਺͕׬શʹཧղͰ͖Ε͹ඇઁಈڃ਺͕ಘΒΕɼ
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ΔɽE(1)
np ͷ৔߹͸ෆఆੑ͕ͳ͍ͨΊɼO(g)ͷ෦෼Λྵͱ͠

ͯɼγϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔ ∂ϵE|ϵ=1 ͷݫ

ີ݁Ռͷඇઁಈ෦෼Λ׬શʹ͢ݱ࠶ΔɽE(2)
np ͷ O(g)ͷ෦

෼΋ɼෆఆੑ૬ࡴͷཁ੥ʹՃ͑ͯɼجఈঢ়ଶΤωϧΪʔ͕

ωͷؔۮ਺Ͱ͋Δͱ͍͏໛ܕͷੑ࣭Λิ͏ͱ׬શʹܾఆͰ

͖Δɽ͜͏ͯ͠ϦαʔδΣϯεΛ༻͍ͯಋग़ͨ͠׬શͳτ

ϥϯεڃ਺͸ɼγϡϨʔσΟϯΨʔํఔࣜͷີݫղ͔Βಘ

ΒΕΔ 1
2∂

2
ϵE|ϵ=1 Λ׬શʹ͢ݱ࠶Δɽ͜ͷΑ͏ʹɼϦαʔ

δΣϯεཧ࿦ͷਖ਼͚ͩ͠͞Ͱͳ͘ɼͦͷ༗༻ੑ΋͜ͷ໛ܕ

Ͱ͔֬ΊΔ͜ͱ͕Ͱ͖ͨɽ

࣮͸͜͜Ͱѻͬͨ໛ܕ͸ɼ2࣍ݩN = (2, 0)௒ରশCPN−1

γάϚ໛ܕΛίϯύΫτԽ͠12, 13, 14, 15)ɼϑΣϧϛΦϯ਺อ

ଘྔΛݻఆͯ͠ಘΒΕΔྔܥֶྗࢠͷҰྫ (N = 2ͷ৔߹)

Ͱ͋ΔɽචऀΒ͸ɼͦΕΒͷ໛ܕͰશͯͷόΠΦϯղΛٻ

ΊɼͦΕΒʹ෇ਵ͢Δγϯϒϧੵ෼Λ࣮͢ߦΔ͜ͱͰશͯ

ͷόΠΦϯ͔Βͷ४ݹయతد༩ΛٻΊͨ8)ɽͦΕʹରͯ͠

ෆఆੑͷ૬ࡴͱ͍͏ϦαʔδΣϯεཧ࿦͔Βͷཁ੥Λ՝͢

͜ͱʹΑͬͯɼ֤όΠΦϯղ͔Βͷد༩ͱͦͷ·ΘΓͷઁ

ಈڃ਺ϘϨϧ࿨͔Β੒Δ׬શͳτϥϯεڃ਺Λߏ੒͢Δ͜

ͱ͕Ͱ͖Δɽ্هͷΑ͏ʹɼN = 2ͷ৔߹ɼͦͷΑ͏ͳτ

ϥϯεڃ਺͸γϡϨʔσΟϯΨʔํఔ͔ࣜΒಘΒΕΔີݫ

݁ՌΛ͢ݱ࠶ΔɽҰํͰ N > 2ͷ৔߹͸ɼ൑໌͍ͯ͠Δ

׬Ռ͕Ұ෦Ͱ͋ΔͨΊɼϦαʔδΣϯεͷ݁Ռͱͷ݁ີݫ

શͳൺֱ͸Ͱ͖͍ͯͳ͍ɽ͔͠͠ɼผͷํݟΛ͢Ε͹ɼ্

ͷ݁Ռ͸ɼଞͷख๏Ͱ͸ಘΒΕͳ͍ඇઁಈత෺ཧྔΛܾه

ఆͰ͖Δͱ͍͏ϦαʔδΣϯεཧ࿦ͷ͞ྗڧΛ͍ࣔͯ͠Δɽ

·ͨɼྔࢠ࿦ɼͦΕ΋ ͰܕΔ໛͢܎ؔʹ࿦ࢠ৔ͷྔݩ2࣍

ϦαʔδΣϯεߏ଄͕׬શʹ໌֬Խ͞Εͨͷ͸ॳΊͯͰ͋

ΓɼϦαʔδΣϯεཧ࿦ͷ৔ͷྔࢠ࿦΁ͷԠ༻Մೳੑ͕ߴ

·ͬͨɽ

7. ඍ෼ํఔࣜͰͷϦαʔδΣϯεʹֶͿ

৅ΛΑΓਂ͘ཧղ͢ΔͨΊʹɼৗඍ෼ํఔݱ࿦Ͱͷࢠྔ

ࣜ (ODE)Ͱࣜܗత΂͖ڃ਺ղ͔ΒҰൠͷղΛߏ੒͢Δମ

ܥ (ODEͰͷϦαʔδΣϯεཧ࿦)Λઆ໌͠Α͏3)ɽ؆୯ͳ

ྫͱͯ͠ɼz = ∞ʹෆ֬ఆಛҟ఺Λ࣋ͭৗඍ෼ํఔࣜ

ϕ′(z) + ϕ(z) =
1

z
(37)

Λ͑ߟΔɽࣜܗత΂͖ڃ਺ղΦ0 =
∑∞

n=0 n! z
−n−1 ͷϘϨϧ

ม׵͸ BΦ0[t] =
1

1−t Ͱ༩͑ΒΕɼਖ਼ͷ্࣮࣠ʹಛҟ఺Λ࣋

ͭ8ɽҰൠղ͸ɼύϥϝʔλʔ σ ∈ RΛಋೖͨ͠τϥϯεڃ
਺ϕ(z;σ) = Φ0+σe−z Ͱ༩͑ΒΕɼͦͷϘϨϧ࿨͸ಛҟ఺

Λආ͚ΔඍখҼࢠ ϵΛؚΉԋࢉS±Φ0 ≡
∫∞e±iϵ

0 e−ztBΦ0(t)

8͜͜Ͱɼz ͸ྔֶྗࢠͷ 1/g ʹʹରԠ͢Δͱ͑ࢥ͹ྑ͍ɽ

Λ༻͍ͯ࣍ͷΑ͏ʹදΘͤΔ9ɽ

S±ϕ(z;σ) = S±Φ0(z) + σe−z. (38)

͜͜Ͱ͸ڥք৚݅ΛఆΊͯσΛܾΊͨͱ͠Α͏ɽͱ͜Ζ͕ɼ

ม਺ z = |z|eiθ͕ετʔΫεઢ θ = 0Λԣ੾Δࡍʹͦͷ઴ۙ

ΔͨΊɼղΛ༩͖͑ى৅͕ݱมԽ͢ΔετʔΫεʹܹٸ͕ܗ

Δσͷ஋͕ετʔΫεఆ਺ s = 2πiͷ෼͚ͩෆ࿈ଓʹมԽ͢

ΔɽϘϨϧ࿨ S±ʹؚ·ΕΔ±ϵ ͸ θͷඍখมԽͱಉ౳ͳͷ

ͰɼετʔΫεઢ θ = 0্Ͱ͸ S+ϕ(z;σ) → S−ϕ(z;σ+ s)

ͷΑ͏ͳ௓ͼ͕ੜ͡Δ͜ͱʹͳΔɽͦͷ݁Ռɼղͷ࿈ଓੑ

S+ϕ(z;σ) = S−ϕ(z;σ + s)͔Βɼ

S+Φ0(z)− S−Φ0(z) = 2πie−z (39)

ͱ͍͏͕ؔ܎ಘΒΕΔɽ͜ͷΑ͏ʹৗඍ෼ํఔࣜʹ͓͍ͯ

͸ɼ“ઁಈత”ͳ΂͖ڃ਺ Φ0 ͷϘϨϧ࿨͕ e−z ΛؚΉ “ඇ

ઁಈత”د༩ͱؔ܎෇͍͍ͯΔɽΤΧʔϧ (Ecalle)͸ඇઢܗ

ͳ৔߹ΛؚΉҰൠͷ ODEʹ͓͍ͯ΋ʮద੾ͳ਺ͷτϥϯ

εڃ਺ύϥϝʔλʔΛಋೖ͢Δ͜ͱͰɼৗඍ෼ํఔࣜͷղ

͕͜ͷΑ͏ͳࣜܗతղͷτϥϯεڃ਺ͱͯ͠ॻ͚Δʯͱ͍

͏ॏཁͳ࣮ࣄΛࣔͨ͠3)ɽ

ઁಈڃ਺ͱඇઁಈڃ਺ͷؔ܎Λ໌֬Խ͠ɼਅͷղΛಋग़͢

Δମܥ͸ΤΠϦΞϯղੳ (Alien calculus)ͱݺ͹ΕΔ3, 16, 17)ɽ

্ͷྫΛΤΠϦΞϯղੳͷݴ༿Ͱݟ௚ͯ͠ΈΑ͏ɽ·ͣε

τʔΫεઢΛ·͙ͨ 2ͭͷϘϨϧ࿨Λͭͳ͙࡞܈༻ͱͯ͠ɼ

ετʔΫεࣗݾಉܕSΛఆٛ͢Δɽ

S+ = S− ◦S, S = exp
[
e−z∆

]
(40)

͜͜Ͱɼ∆͸ਖ਼্࣮࣠ t = 1ͷಛҟ఺ʹ͍ͭͯͷΤΠϦΞ

ϯඍ෼ͱݺ͹Εɼަ܎ؔ׵ [e−z∆, ∂σ] = 0Λຬͨ͠ɼτϥ

ϯεڃ਺ ϕ(z;σ)΁ͷ࡞༻͕ҎԼΛ༩͑Δɽ

e−z∆ϕ(z;σ) = s ∂σϕ(z;σ) (41)

͜͜Ͱൺྫ܎਺ͱͯ͠ετʔΫεఆ਺ s ΕΔɽΤΠݱ͕

ϦΞϯඍ෼ͱҰൠͷඍ෼ԋࢉΛ͚ؔͮ܎Δ͜ͷํఔࣜ͸ϒ

Ϧοδํఔࣜͱݺ͹Εɼ྆ลΛൺֱ͢Δ͜ͱͰ∆Φ0 = sͱ

∆e−z = 0͕ಘΒΕΔɽ͜ͷ݁Ռͱ (40)ӈࣜΛ༻͍Δͱ

SΦ0 = Φ0 + se−z, Sϕ(z;σ) = ϕ(z;σ + s) (42)

͕Θ͔Δɽ࠷ऴతʹɼӈࣜ྆ลʹ S−Λ࡞༻ͤ͞ ࣜࠨ(40)

Λ͏࢖ͱ S+ϕ(z;σ) = S−ϕ(z;σ+ s) ͕ಘΒΕɼετʔΫε

଄ͷຊ࣭ΛߏͱΤΠϦΞϯඍ෼͕ϦαʔδΣϯεܕಉݾࣗ

දΘ͍ͯ͠Δ͜ͱ͕Θ͔Δɽ͜͜Ͱॏཁͳ͜ͱ͸ɼʮઁಈڃ
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�0 =
1X

q=0

n!z�n�1

s = 2⇡i

ボレル和

&

◆オイラー方程式

常微分方程式のリサージェンス構造



'00 � z' = 0ex.) エアリー方程式

' = Ai(z) ⇡ e�
2
3 z

3
2 S±

X
anz

� 3
2n + � e

2
3 z

3
2 S±

X
bnz

� 3
2n

(z = ∞に不確定特異点)

0  arg[z]  2⇡

Re[Ai(z)]



· エアリー積分

Ai(g�2) =

Z 1

�1
d� exp


�i

✓
�3

3
+

�

g2

◆�

⇡
r

g

4⇡
exp

✓
� 2

3g2

◆

1/g2 = 1

1/g2 = i/2

積分におけるリサージェンス構造

0次元積分における最急降下法では積分径路を変形し
複素固定点に繋がる径路(thimble)に分解

経路積分においても複素固定点を考えるのは自然

Re[e�i(�3/3+�/g2)]



· エアリー積分

複素平面上の2つの複素固定点

�

i

g

� i

g

arg[g2] = 0+

最急降下法：元の積分径路を，固定点を
通り，虚部一定の最急降下径路に分解

C =
X

�

n�J�
最急降下径路分解 

= Thimble分解

Ai(g�2) =

Z 1

�1
d� exp


�i

✓
�3

3
+

�

g2

◆�

� = ± i

g

最急降下法(Thimble分解)における複素固定点の寄与

積分におけるリサージェンス構造



arg[g2] = 0+

Re[S]  Re[S0]

· エアリー積分

J� 最急降下径路

n� = hK�, Ci 最急上昇径路Kと 

元の径路との交叉数

Ai(g�2) =

Z 1

�1
d� exp


�i

✓
�3

3
+

�

g2

◆�

C =
X

�

n�J�

最急降下法(Thimble分解)における複素固定点の寄与

・

・

Im[S] = Im[S0]

�

i

g

� i

g

J�

積分におけるリサージェンス構造



· エアリー積分

n+ = hK+, Ci = 0

n� = hK�, Ci = 1

C = J�C =
X

�

n�J�

arg[g2] = 0+

最急降下法(Thimble分解)における複素固定点の寄与

arg[g2] =
2⇡

3
�

積分におけるリサージェンス構造

arg[g2] = 0+
K�

J+

K+

J�
まで有効な分解



· エアリー積分

C =
X

�

n�J�

ストークス現象：特定のarg[g^2]で
thimble分解が不連続変化

最急降下法(Thimble分解)における複素固定点の寄与

arg[g2] =
2⇡

3
+

n+ = hK+, Ci = 1

n� = hK�, Ci = 1

C = J+ + J�

積分におけるリサージェンス構造

arg[g2] =
2⇡

3
+

K�

J+

K+

J�



arg[g2] = �2⇡

3
! ⇡ストークス現象· エアリー積分

C = J�

最急降下法(Thimble分解)における複素固定点の寄与

C = J+ + J�

arg[g2] =
2⇡

3
+arg[g2] =

2⇡

3
�

積分におけるリサージェンス構造

Thimble分解がストークス線で不連続に変化 

エアリー関数自体はストークス線でも連続

J�


2⇡

3

��
= J�


2⇡

3

+�
+ J+



arg[g2] = �2⇡

3
! ⇡ストークス現象

摂動ボレル和の不定性はストークス線上
でのthimble分解の不定性に対応！

· エアリー積分

C = J�

最急降下法(Thimble分解)における複素固定点の寄与

C = J+ + J�

arg[g2] =
2⇡

3
+arg[g2] =

2⇡

3
�

積分におけるリサージェンス構造

Thimble分解がストークス線で不連続に変化 

エアリー関数自体はストークス線でも連続



・             SUSY case

厳密波動関数

H = 0
ゼロ基底状態エネルギー

Witten Index ≠ 0

・CP1 ハミルトニアン [Fujimori, Kamata, TM, Nitta, Sakai(16)]

✏ = 1

10

The parameter ϵ controls the strength of the interaction between the bosonic and fermionic degrees

of freedom. If we set ϵ = 1, this model becomes a supersymmetric system which can be obtained

from the 2d N = (2, 0) CP 1 sigma model by an analogous dimensional reduction as the one

discussed in the previous subsection.

Since the fermion number ψ̄ψ commutes with the Hamiltonian, we can eliminate ψ by using

the conserved fermion number and the associated induced potential. By projecting quantum states

onto the subspace of the Hilbert space with a fixed fermion number, we obtain the following purely

bosonic Lagrangian (see Appendix A for details)

L =
1

g2
∂tϕ∂tϕ̄

(1 + ϕϕ̄)2
− V (ϕϕ̄), V (ϕϕ̄) ≡ 1

g2
m2ϕϕ̄

(1 + ϕϕ̄)2
− ϵm

1− ϕϕ̄

1 + ϕϕ̄
, (II.22)

where we have chosen the fermion number so that the supersymmetric ground state for ϵ = 1

is contained in the subspace of the Hilbert space. The potential V as a function of the latitude

θ ≡ 2arctan|ϕ| is shown in Fig. 3.

! "
#
!

Fig. 3: The potential V with the contribution of the fermion. The horizontal axis denotes the latitude

θ ≡ 2arctan|ϕ| on CP 1 ∼= S2.

For ϵ = 1, the ground state wave function Ψ0, which preserves the supersymmetry, is given as

the zero energy solution of the Schrödinger equation

HΨ0 = 0, (II.23)

with the Hamiltonian H of the bosonic theory:

H = −g2(1 + ϕϕ̄)2
∂

∂ϕ

∂

∂ϕ̄
+ V (ϕϕ̄). (II.24)

We find the exact solution of the ground state wave function

Ψ0 = exp

(
m

2g2
1− ϕϕ̄

1 + ϕϕ̄

)
. (II.25)
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For ϵ = 1, the ground state wave function Ψ0, which preserves the supersymmetry, is given as

the zero energy solution of the Schrödinger equation

HΨ0 = 0, (II.23)

with the Hamiltonian H of the bosonic theory:

H = −g2(1 + ϕϕ̄)2
∂

∂ϕ

∂

∂ϕ̄
+ V (ϕϕ̄). (II.24)

We find the exact solution of the ground state wave function

Ψ0 = exp

(
m

2g2
1− ϕϕ̄

1 + ϕϕ̄

)
. (II.25)

完全なリサージェンス構造 in twisted CP1



・             near-SUSY case

ハミルトニアン
のずれ ノンゼロ基底状態エネルギー

4

need to choose contours above or below the real axis,
which are indicated by ± here. In the present case, the
lateral Borel resummation S±Epert gives a finite but am-
biguous result, whose imaginary ambiguity is given by

ImS±Epert = ∓ 2πm

Γ(1− ϵ)2

(
g2

2m

)2(ϵ−1)

e
− 2m

g2 , (.24)

with − in the right hand side for θ = +0 and + for
θ = −0 with g2 = |g2|eiθ. We note that the direction θ

of the Laplace integral
∫ eiθ∞
0 in the Borel resummation

is equivalent to the phase of the coupling constant g2 =
|g2|eiθ. Instead of exhibitig the whole Borel resummation
S±E, we exhibit the result as an expansion of ϵ− 1 ≡ δϵ
for later convenience,

S±Epert = δϵ
[
g2 −m

]
+ δϵ2

[
......

]
. (.25)

Cancellation of Imaginary ambiguities : By use
of the relation sin ϵπ

π Γ (ϵ) = 1
Γ(1−ϵ) , the imaginary ambi-

guity from the perturbative contribution in CP 1 model
is rewritten as

ImS±Epert = ±2m

π
sin2 ϵπ Γ(ϵ)2

(
g2

2m

)2(ϵ−1)

e
− 2m

g2 ,(.26)

with + for θ = −0 and − for θ = +0. This is nothing
but the contribution from the real and complex bion so-
lutions with the opposite sign. Therefore, the imaginary
ambiguity from the perturbative and non-perturbative
contributions in CP 1 model completely cancel out as

ImS±Epert + ImEbion = 0. (.27)

The cancellation of the imaginary ambiguities in the
trans-series is one of the good indicators on validity of
application of the resurgence theory to the physical the-
ory since the physical quantity should be real.

Exact ground-state energy as trans-series : We
will obtain the exact result of the ground state energy and
write it in a form of trans-series in the CP 1 model. For
ϵ = 1, the ground state wave functionΨ0, which preserves
the supersymmetry, is given as the zero energy solution of
the Schrödinger equation HΨ0 = 0 . The exact solution
of the ground state wave function is written as

Ψ0 = exp

(
m

2g2
1− ϕϕ̄

1 + ϕϕ̄

)
. (.28)

The non-perturbative corrections in the near supersym-
metric case ϵ ≈ 1 is obtained by expanding the energy
with respect to small δϵ ≡ ϵ− 1

E =
⟨0|δH|0⟩
⟨0|0⟩ +

⟨δψ|δH|δψ⟩
⟨0|0⟩ +O(δϵ3), (.29)

where the perturbative Hamiltonian is given by
δH = H − Hϵ=1. We exactly calculate the leading

and next-leading order coefficients in the small δϵ expan-
sion of the ground state energy by using the explicit form
of the ground state wave function (.28) as

E = δϵ

[
g2 −m coth

m

g2

]

+ δϵ2
[
g2 −m

coth m
g2

sinh2 m
g2

(Ei( 2mg2 ) + Ei(− 2m
g2 )

2

− γ − log
2m

g2

)]
+ O(δϵ3)

= δϵE(1) + δϵ2 E(2) + O(δϵ3) , (.30)

with γ being the Euler constant. We note that Eq. (.30)
is non-perturbative as a function of the coupling constant
g. Now, we express the perturbative contribution and the
complex saddle-point contribution as an expansion of δϵ,

Ebion = δϵ
[
− 2me

− 2m
g2

]

+ δϵ2
[
4me

− 2m
g2 (γ + log

2m

g2
± iπ

2
)
]
+ O(δϵ3)

= δϵE(1)
bion + δϵ2 E(2)

bion + O(δϵ3), (.31)

S±Epert = δϵ
[
g2 −m

]
+ δϵ2

[
......

]
+O(δϵ3)

= δϵS±E
(1)
pert + δϵ2S±E

(2)
pert + O(δϵ3) . (.32)

Finally, we find out that the exact ground state energy
(.30) turn out to be composed of the perturbative and
non-perturbative parts in each order of δϵ as

E(1) = S±E
(1)
pert + E(1)

bion ,

E(2) = S±E
(2)
pert + E(2)

bion . (.33)

These are the explicit trans-series equations (.1) which
we expected.

These results can be checked by using the original form
of asymptotic expansion, or without using the Borel re-
summation. For example, the coefficient of δϵ2 in the
exact result E(2) is decomposed into a part which can be
expressed as a series of g2/m and a part which cannot be
expressed by that. The former part is expanded as

∼
∑

l=0

m
(l − 1)!

2l−1

(
g2

m

)l+1

, (.34)

which is a δϵ2 coefficient of the perturbative series Epert

in (.21). The latter part is

∼ 4me
− 2m

g2

(
γ + log

2m

g2

)
, (.35)

which is the leading δϵ2 coefficient of the non-
perturbative contribution in (.13) except the imaginary
ambiguity. These results on CP 1 model can be extended
to CPN−1 model.
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The parameter ϵ controls the strength of the interaction between the bosonic and fermionic degrees

of freedom. If we set ϵ = 1, this model becomes a supersymmetric system which can be obtained

from the 2d N = (2, 0) CP 1 sigma model by an analogous dimensional reduction as the one

discussed in the previous subsection.

Since the fermion number ψ̄ψ commutes with the Hamiltonian, we can eliminate ψ by using

the conserved fermion number and the associated induced potential. By projecting quantum states

onto the subspace of the Hilbert space with a fixed fermion number, we obtain the following purely

bosonic Lagrangian (see Appendix A for details)

L =
1

g2
∂tϕ∂tϕ̄

(1 + ϕϕ̄)2
− V (ϕϕ̄), V (ϕϕ̄) ≡ 1

g2
m2ϕϕ̄

(1 + ϕϕ̄)2
− ϵm

1− ϕϕ̄

1 + ϕϕ̄
, (II.22)

where we have chosen the fermion number so that the supersymmetric ground state for ϵ = 1

is contained in the subspace of the Hilbert space. The potential V as a function of the latitude

θ ≡ 2arctan|ϕ| is shown in Fig. 3.

! "
#
!

Fig. 3: The potential V with the contribution of the fermion. The horizontal axis denotes the latitude

θ ≡ 2arctan|ϕ| on CP 1 ∼= S2.

For ϵ = 1, the ground state wave function Ψ0, which preserves the supersymmetry, is given as

the zero energy solution of the Schrödinger equation

HΨ0 = 0, (II.23)

with the Hamiltonian H of the bosonic theory:

H = −g2(1 + ϕϕ̄)2
∂

∂ϕ

∂

∂ϕ̄
+ V (ϕϕ̄). (II.24)

We find the exact solution of the ground state wave function

Ψ0 = exp

(
m

2g2
1− ϕϕ̄

1 + ϕϕ̄

)
. (II.25)✏ ⇡ 1

11

The existence of the supersymmetric state implies that the ground state energy receives no non-

perturbative correction for ϵ = 1. For a generic value of ϵ, there can be corrections to the ground

state energy. Indeed, we can show that there exist non-perturbative corrections in the near super-

symmetric case ϵ ≈ 1 by expanding the energy with respect to small δϵ ≡ ϵ− 1

E ≈ ⟨0|δH|0⟩
⟨0|0⟩ = − δϵm

〈
1− ϕϕ̄

1 + ϕϕ̄

〉

ϵ=1

, (II.26)

where the perturbative Hamiltonian is given by

δH = H −Hϵ=1 = − δϵm
1− ϕϕ̄

1 + ϕϕ̄
. (II.27)

As Eq. (II.26) indicates, we can exactly calculate the leading order coefficients in the small δϵ

expansion of the ground state energy by using the explicit form of the ground state wave function

(II.25) as

E =

∫
dv δH|Ψ0|2
∫

dv |Ψ0|2
+O(δϵ2) = δϵ

[
g2 −m coth

m

g2

]
+O(δϵ2), (II.28)

where dv is the standard volume element on CP 1: dv ≡ d2ϕ/(1 + ϕϕ̄)2. Note that although we

have expanded the energy with respect to δϵ, Eq. (II.28) is non-perturbative as a function of the

coupling constant g. We can decompose the ground state energy (II.28) into the perturbative and

non-perturbative parts

Epert = (g2 −m)δϵ+O
(
δϵ2
)
, (II.29)

Ebion = −2me
− 2m

g2 δϵ+O
(
e
− 4m

g2 , δϵ2
)
. (II.30)

It is interesting to note that perturbative contributions to this order of ϵ − 1 are terminated at

the order g2 without any higher order corrections, and hence there is no ambiguity associated with

non-Borel summable asymptotic series. In the following, we will see that contributions of (real and

complex) bion configurations correctly reproduce this non-perturbative correction.

III. BION SADDLE POINTS AND ONE-LOOP APPROXIMATION

In the previous section, we have seen that the ground state energy receives no correction for

ϵ = 1 due to the supersymmetry and there exists a non-perturbative correction at least in the near

supersymmetric case ϵ ≈ 1. In this section, we discuss the non-perturbative correction from the
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2

Lagrangian

g2L = G
[
|∂tϕ|2 − |mϕ|2 + iψ̄Dtψ

]
− ϵ

∂2µ

∂ϕ∂ϕ̄
ψψ̄, (1)

where ϕ is the inhomogeneous coordinate, G =
∂ϕ∂ϕ̄ log(1 + |ϕ|2) is the Fubini-Study metric, Dt = ∂t +
∂tϕ∂ϕ logG is the pull back of the covariant derivative
and µ = m|ϕ|2/(1 + |ϕ|2) is the moment map associated
with the U(1) symmetry ϕ → eiθϕ. The parameter ϵ is
the boson-fermion coupling and the Lagrangian becomes
supersymmetric at ϵ = 1. Since the fermion number
F = Gψψ̄ commutes with the Hamiltonian, the Hilbert
space can be decomposed into two subspaces with F = 1
and F = 0. By projecting quantum states onto the sub-
space which contains the ground state (F = 1), we obtain
the bosonic Lagrangian L = |∂tϕ|2/(g2(1 + |ϕ|2)2) − V
with the potential

V =
1

g2
m2|ϕ|2

(1 + |ϕ|2)2 − ϵm
1− |ϕ|2

1 + |ϕ|2 . (2)

We note that θ(≡ −2 arctan |ϕ|) = 0,π are global and
metastable vacua respectively.
For ϵ = 1, the ground state wave function Ψ0 preserv-

ing the SUSY is given as a zero energy solution of the
Schrödinger equation

Hϵ=1Ψ0 =

[
−g2(1 + |ϕ|2)2 ∂

∂ϕ

∂

∂ϕ̄
+ Vϵ=1

]
Ψ0 = 0. (3)

It is exactly solved as Ψ0 = ⟨ϕ|0⟩ = exp(−µ/g2). For ϵ ≈
1, the leading order correction to the ground state wave
function can be obtained by expanding the Schrödinger
equation with respect to small δϵ ≡ ϵ − 1 as ⟨ϕ|δΨ⟩.
Correspondingly, the ground state energy E can also be
expanded

E = δϵE(1) + δϵ2 E(2) + · · · . (4)

These expansion coefficients can be determined by the
standard Rayleigh-Schrödinger perturbation theory as
E(1) = ⟨0|δH|0⟩/⟨0|0⟩, E(2) = −⟨δΨ|Hϵ=1|δΨ⟩/⟨0|0⟩, · · ·
with δH = H − Hϵ=1. We find that these coefficients
E(i) are real without imaginary ambiguities and can be
expanded in absolutely convergent power series with re-
spect to the nonperturbative exponential exp(−2m/g2)

E(i) =
∞∑

p=0

E(i)
p exp(−2pm/g2), (5)

where the zero-th term E(i)
0 corresponds to the pertur-

bative contributions on the trivial vacuum (perturbative
vacuum). The coefficients of E(1) [21] are

E(1)
0 = −m+ g2, E(1)

p = −2m, (p ≥ 1). (6)

If the coefficients of E(2) are expanded in powers of g2,
they give factorially divergent asymptotic series, which

can be Borel-resummed. Hence we rewrite the coefficient
in the form of the Borel transform (See Appendix. A for
the details of calculations.) as

E(2)
0 = g2 + 2m

∫ ∞

0
dt

e−t

t− 2m
g2±i0

, (7)

E(2)
p = 2m

∫ ∞

0
dt e−t

{
(p+ 1)2

t− 2m
g2±i0

+
(p− 1)2

t+ 2m
g2

}

+ 4mp2
(
γ + log

2m

g2
± πi

2

)
, (p ≥ 1). (8)

Note that the imaginary ambiguities associated to the

Borel resummation is manifest in the first term of E(2)
p

with g2±i0, which is compensated by the imaginary part

±iπ/2 in the last term of E(2)
p+1, reproducing the original

real E(2) precisely.
We can now recognize the full resurgence structure to

all orders of nonperturbative exponential: imaginary am-
biguity of the non-Borel summable divergent perturba-
tion series on the p-bion background in the first term of

E(2)
p is cancelled by the imaginary ambiguity of the clas-

sical contribution of (p+1)-bion contribution in the last

term of E(2)
p+1. We note the absence of powers of g2 in

the imaginary ambiguity, which will allow us to recover
non-Borel summable perturbation series on the p-bion
background completely from the (p+1)-bion contribution
through the dispersion relation, without computing per-
turbative corrections around the multi-bion background
explicitly. Moreover, if we observe that E(2)/m is an
even function of m/g2, we can also understand the pres-
ence of Borel-summable part (second term of the first
line in Eq.(8)). Thus all the terms can now be repro-
duced through resurgence relation and the sign change
of m/g2, if we can compute all the classical p-bion con-
tributions.

Multi-bion solutions : Nonperturbative contribu-
tions to the ground state energy come from the saddle
points of the path integral Z =

∫
DϕDϕ̃ e−SE ∼ e−βE

(for large β), where we have complexified the degrees of
freedom by regarding ϕ ≡ ϕC

R + iϕC
I and ϕ̃ ≡ ϕC

R − iϕC
I

as independent holomorphic variables, and imposed the
periodic boundary condition ϕ(τ + β) = ϕ(τ) and for

ϕ̃. The Euclidean action SE =
∫ β
0 dτ [∂τϕ∂τ ϕ̃/(g2(1 +

ϕϕ̃)2) + V (ϕϕ̃)] has two conserved Noether charges as-
sociated with the complexification of the Euclidean time
translation τ → τ + a and the phase rotation (ϕ, ϕ̃) →
(eibϕ, e−ibϕ̃) (a, b ∈ C). Using the corresponding con-
servation laws, we can obtain the following solution of
the equation of motion with nontrivial contribution in a
β → ∞ limit,

ϕ = eiφc
f(τ − τc)

sin2 α
, ϕ̃ = e−iφc

f(τ − τc)

sin2 α
, (9)

where (τc,φc) are complex moduli parameters associated
with the symmetry and f(τ) is the elliptic function

f(τ) = cs(Ωτ, k) ≡ cn(Ωτ, k)/sn(Ωτ, k), (10)
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Then, we can define the perturbative sum for the non-alternating series as the analytic con-

tinuation of B0(g2) in the g2 complex plane from negative coupling, g2 < 0, to the positive

real axis, g2 > 0. This can be done in one of the two ways as shown in Fig. 2. Approaching

the positive real axis clock-wise (from above) and counter-clock-wise (from below).

B0(|g2| ± i�) = ReB0(|g2|)± i ImB0(|g2|) where ImB0(|g2|) ⇤ e�2SI ⇤ e�2A/g2 (6.4)

is the ambiguous part, and is a manifestation of non-Borel-summability [compare with (1.22)].

A definition of the Borel sum equivalent to what we described above through analytic

continuation in the complex g2-plane is the directional (sectorial) Borel sum. Define

S�P (g2) ⇥ B�(g
2) =

1

g2

� ⌅·ei�

0
BP (t) e�t/g2dt, (6.5)

C+

C�

t

Figure 9. Lateral, or right and left, Borel sums. Dark circles are singularities (poles or branch
points). Whenever a singularity exists between the right and left Borel sums, the theory is non-Borel
summable. The singular direction in the t-plane corresponds to a Stokes line in the complex g2-plane,
see Fig.2. The di�erence of the sectorial sums in passing from ⇥ = 0� to ⇥ = 0+ is the Stokes “jump”
across a Stokes ray.

A special case of this is the lateral Borel sum. The function B�±(g2) is associated with

contours just above and just below the ray at angle ⇥, and is called right (left) Borel resum-

mation. If there are no singular points in the ⇥ direction, then the left and right Borel sums

are equal, and the theory is sectorial Borel summable in the ⇥-direction. A theory for which

there are no singularities on ⇥ = 0 is called Borel summable in physics. In many cases, there

is a ray of singular points of the Borel transform BP (t), as shown in Figure 9. Then, the

theory is non-Borel summable, but left and right Borel summable. The ambiguity described

above, associated with whether we approach the real positive axis from above or below in

the complex g2-plane, in the latter language, maps to the choice of the integration contour

in the Laplace-transform. The integral is, of course, dependent on the choice of the contour,
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2

Lagrangian

g2L = G
[
|∂tϕ|2 − |mϕ|2 + iψ̄Dtψ

]
− ϵ

∂2µ

∂ϕ∂ϕ̄
ψψ̄, (1)

where ϕ is the inhomogeneous coordinate, G =
∂ϕ∂ϕ̄ log(1 + |ϕ|2) is the Fubini-Study metric, Dt = ∂t +
∂tϕ∂ϕ logG is the pull back of the covariant derivative
and µ = m|ϕ|2/(1 + |ϕ|2) is the moment map associated
with the U(1) symmetry ϕ → eiθϕ. The parameter ϵ is
the boson-fermion coupling and the Lagrangian becomes
supersymmetric at ϵ = 1. Since the fermion number
F = Gψψ̄ commutes with the Hamiltonian, the Hilbert
space can be decomposed into two subspaces with F = 1
and F = 0. By projecting quantum states onto the sub-
space which contains the ground state (F = 1), we obtain
the bosonic Lagrangian L = |∂tϕ|2/(g2(1 + |ϕ|2)2) − V
with the potential

V =
1

g2
m2|ϕ|2

(1 + |ϕ|2)2 − ϵm
1− |ϕ|2

1 + |ϕ|2 . (2)

We note that θ(≡ −2 arctan |ϕ|) = 0,π are global and
metastable vacua respectively.
For ϵ = 1, the ground state wave function Ψ0 preserv-

ing the SUSY is given as a zero energy solution of the
Schrödinger equation

Hϵ=1Ψ0 =

[
−g2(1 + |ϕ|2)2 ∂

∂ϕ

∂

∂ϕ̄
+ Vϵ=1

]
Ψ0 = 0. (3)

It is exactly solved as Ψ0 = ⟨ϕ|0⟩ = exp(−µ/g2). For ϵ ≈
1, the leading order correction to the ground state wave
function can be obtained by expanding the Schrödinger
equation with respect to small δϵ ≡ ϵ − 1 as ⟨ϕ|δΨ⟩.
Correspondingly, the ground state energy E can also be
expanded

E = δϵE(1) + δϵ2 E(2) + · · · . (4)

These expansion coefficients can be determined by the
standard Rayleigh-Schrödinger perturbation theory as
E(1) = ⟨0|δH|0⟩/⟨0|0⟩, E(2) = −⟨δΨ|Hϵ=1|δΨ⟩/⟨0|0⟩, · · ·
with δH = H − Hϵ=1. We find that these coefficients
E(i) are real without imaginary ambiguities and can be
expanded in absolutely convergent power series with re-
spect to the nonperturbative exponential exp(−2m/g2)

E(i) =
∞∑

p=0

E(i)
p exp(−2pm/g2), (5)

where the zero-th term E(i)
0 corresponds to the pertur-

bative contributions on the trivial vacuum (perturbative
vacuum). The coefficients of E(1) [21] are

E(1)
0 = −m+ g2, E(1)

p = −2m, (p ≥ 1). (6)

If the coefficients of E(2) are expanded in powers of g2,
they give factorially divergent asymptotic series, which

can be Borel-resummed. Hence we rewrite the coefficient
in the form of the Borel transform (See Appendix. A for
the details of calculations.) as

E(2)
0 = g2 + 2m

∫ ∞

0
dt

e−t

t− 2m
g2±i0

, (7)

E(2)
p = 2m

∫ ∞

0
dt e−t

{
(p+ 1)2

t− 2m
g2±i0

+
(p− 1)2

t+ 2m
g2

}

+ 4mp2
(
γ + log

2m

g2
± πi

2

)
, (p ≥ 1). (8)

Note that the imaginary ambiguities associated to the

Borel resummation is manifest in the first term of E(2)
p

with g2±i0, which is compensated by the imaginary part

±iπ/2 in the last term of E(2)
p+1, reproducing the original

real E(2) precisely.
We can now recognize the full resurgence structure to

all orders of nonperturbative exponential: imaginary am-
biguity of the non-Borel summable divergent perturba-
tion series on the p-bion background in the first term of

E(2)
p is cancelled by the imaginary ambiguity of the clas-

sical contribution of (p+1)-bion contribution in the last

term of E(2)
p+1. We note the absence of powers of g2 in

the imaginary ambiguity, which will allow us to recover
non-Borel summable perturbation series on the p-bion
background completely from the (p+1)-bion contribution
through the dispersion relation, without computing per-
turbative corrections around the multi-bion background
explicitly. Moreover, if we observe that E(2)/m is an
even function of m/g2, we can also understand the pres-
ence of Borel-summable part (second term of the first
line in Eq.(8)). Thus all the terms can now be repro-
duced through resurgence relation and the sign change
of m/g2, if we can compute all the classical p-bion con-
tributions.

Multi-bion solutions : Nonperturbative contribu-
tions to the ground state energy come from the saddle
points of the path integral Z =

∫
DϕDϕ̃ e−SE ∼ e−βE

(for large β), where we have complexified the degrees of
freedom by regarding ϕ ≡ ϕC

R + iϕC
I and ϕ̃ ≡ ϕC

R − iϕC
I

as independent holomorphic variables, and imposed the
periodic boundary condition ϕ(τ + β) = ϕ(τ) and for

ϕ̃. The Euclidean action SE =
∫ β
0 dτ [∂τϕ∂τ ϕ̃/(g2(1 +

ϕϕ̃)2) + V (ϕϕ̃)] has two conserved Noether charges as-
sociated with the complexification of the Euclidean time
translation τ → τ + a and the phase rotation (ϕ, ϕ̃) →
(eibϕ, e−ibϕ̃) (a, b ∈ C). Using the corresponding con-
servation laws, we can obtain the following solution of
the equation of motion with nontrivial contribution in a
β → ∞ limit,

ϕ = eiφc
f(τ − τc)

sin2 α
, ϕ̃ = e−iφc

f(τ − τc)

sin2 α
, (9)

where (τc,φc) are complex moduli parameters associated
with the symmetry and f(τ) is the elliptic function

f(τ) = cs(Ωτ, k) ≡ cn(Ωτ, k)/sn(Ωτ, k), (10)

E(2) = g2 �m
coth m

g2

sinh2 m
g2

2

4
Ei

⇣
2m
g2

⌘
+ Ei

⇣
� 2m

g2

⌘

2
� � � log

2m

g2

3

5

E(2)
p = 2m

Z 1

0
dte�t

"
(p+ 1)2

t� 2m
g2±i0

+
(p� 1)2

t+ 2m
g2

#
+ 4mp2

✓
� + log

2m

g2
± i⇡

2

◆

p-bion背景での摂動的寄与 p-bionの半古典的寄与

Then, we can define the perturbative sum for the non-alternating series as the analytic con-

tinuation of B0(g2) in the g2 complex plane from negative coupling, g2 < 0, to the positive

real axis, g2 > 0. This can be done in one of the two ways as shown in Fig. 2. Approaching

the positive real axis clock-wise (from above) and counter-clock-wise (from below).

B0(|g2| ± i�) = ReB0(|g2|)± i ImB0(|g2|) where ImB0(|g2|) ⇤ e�2SI ⇤ e�2A/g2 (6.4)

is the ambiguous part, and is a manifestation of non-Borel-summability [compare with (1.22)].

A definition of the Borel sum equivalent to what we described above through analytic

continuation in the complex g2-plane is the directional (sectorial) Borel sum. Define

S�P (g2) ⇥ B�(g
2) =

1

g2

� ⌅·ei�

0
BP (t) e�t/g2dt, (6.5)

C+

C�

t

Figure 9. Lateral, or right and left, Borel sums. Dark circles are singularities (poles or branch
points). Whenever a singularity exists between the right and left Borel sums, the theory is non-Borel
summable. The singular direction in the t-plane corresponds to a Stokes line in the complex g2-plane,
see Fig.2. The di�erence of the sectorial sums in passing from ⇥ = 0� to ⇥ = 0+ is the Stokes “jump”
across a Stokes ray.

A special case of this is the lateral Borel sum. The function B�±(g2) is associated with

contours just above and just below the ray at angle ⇥, and is called right (left) Borel resum-

mation. If there are no singular points in the ⇥ direction, then the left and right Borel sums

are equal, and the theory is sectorial Borel summable in the ⇥-direction. A theory for which

there are no singularities on ⇥ = 0 is called Borel summable in physics. In many cases, there

is a ray of singular points of the Borel transform BP (t), as shown in Figure 9. Then, the

theory is non-Borel summable, but left and right Borel summable. The ambiguity described

above, associated with whether we approach the real positive axis from above or below in

the complex g2-plane, in the latter language, maps to the choice of the integration contour

in the Laplace-transform. The integral is, of course, dependent on the choice of the contour,
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2

Lagrangian

g2L = G
[
|∂tϕ|2 − |mϕ|2 + iψ̄Dtψ

]
− ϵ

∂2µ

∂ϕ∂ϕ̄
ψψ̄, (1)

where ϕ is the inhomogeneous coordinate, G =
∂ϕ∂ϕ̄ log(1 + |ϕ|2) is the Fubini-Study metric, Dt = ∂t +
∂tϕ∂ϕ logG is the pull back of the covariant derivative
and µ = m|ϕ|2/(1 + |ϕ|2) is the moment map associated
with the U(1) symmetry ϕ → eiθϕ. The parameter ϵ is
the boson-fermion coupling and the Lagrangian becomes
supersymmetric at ϵ = 1. Since the fermion number
F = Gψψ̄ commutes with the Hamiltonian, the Hilbert
space can be decomposed into two subspaces with F = 1
and F = 0. By projecting quantum states onto the sub-
space which contains the ground state (F = 1), we obtain
the bosonic Lagrangian L = |∂tϕ|2/(g2(1 + |ϕ|2)2) − V
with the potential

V =
1

g2
m2|ϕ|2

(1 + |ϕ|2)2 − ϵm
1− |ϕ|2

1 + |ϕ|2 . (2)

We note that θ(≡ −2 arctan |ϕ|) = 0,π are global and
metastable vacua respectively.
For ϵ = 1, the ground state wave function Ψ0 preserv-

ing the SUSY is given as a zero energy solution of the
Schrödinger equation

Hϵ=1Ψ0 =

[
−g2(1 + |ϕ|2)2 ∂

∂ϕ

∂

∂ϕ̄
+ Vϵ=1

]
Ψ0 = 0. (3)

It is exactly solved as Ψ0 = ⟨ϕ|0⟩ = exp(−µ/g2). For ϵ ≈
1, the leading order correction to the ground state wave
function can be obtained by expanding the Schrödinger
equation with respect to small δϵ ≡ ϵ − 1 as ⟨ϕ|δΨ⟩.
Correspondingly, the ground state energy E can also be
expanded

E = δϵE(1) + δϵ2 E(2) + · · · . (4)

These expansion coefficients can be determined by the
standard Rayleigh-Schrödinger perturbation theory as
E(1) = ⟨0|δH|0⟩/⟨0|0⟩, E(2) = −⟨δΨ|Hϵ=1|δΨ⟩/⟨0|0⟩, · · ·
with δH = H − Hϵ=1. We find that these coefficients
E(i) are real without imaginary ambiguities and can be
expanded in absolutely convergent power series with re-
spect to the nonperturbative exponential exp(−2m/g2)

E(i) =
∞∑

p=0

E(i)
p exp(−2pm/g2), (5)

where the zero-th term E(i)
0 corresponds to the pertur-

bative contributions on the trivial vacuum (perturbative
vacuum). The coefficients of E(1) [21] are

E(1)
0 = −m+ g2, E(1)

p = −2m, (p ≥ 1). (6)

If the coefficients of E(2) are expanded in powers of g2,
they give factorially divergent asymptotic series, which

can be Borel-resummed. Hence we rewrite the coefficient
in the form of the Borel transform (See Appendix. A for
the details of calculations.) as

E(2)
0 = g2 + 2m

∫ ∞

0
dt

e−t

t− 2m
g2±i0

, (7)

E(2)
p = 2m

∫ ∞

0
dt e−t

{
(p+ 1)2

t− 2m
g2±i0

+
(p− 1)2

t+ 2m
g2

}

+ 4mp2
(
γ + log

2m

g2
± πi

2

)
, (p ≥ 1). (8)

Note that the imaginary ambiguities associated to the

Borel resummation is manifest in the first term of E(2)
p

with g2±i0, which is compensated by the imaginary part

±iπ/2 in the last term of E(2)
p+1, reproducing the original

real E(2) precisely.
We can now recognize the full resurgence structure to

all orders of nonperturbative exponential: imaginary am-
biguity of the non-Borel summable divergent perturba-
tion series on the p-bion background in the first term of

E(2)
p is cancelled by the imaginary ambiguity of the clas-

sical contribution of (p+1)-bion contribution in the last

term of E(2)
p+1. We note the absence of powers of g2 in

the imaginary ambiguity, which will allow us to recover
non-Borel summable perturbation series on the p-bion
background completely from the (p+1)-bion contribution
through the dispersion relation, without computing per-
turbative corrections around the multi-bion background
explicitly. Moreover, if we observe that E(2)/m is an
even function of m/g2, we can also understand the pres-
ence of Borel-summable part (second term of the first
line in Eq.(8)). Thus all the terms can now be repro-
duced through resurgence relation and the sign change
of m/g2, if we can compute all the classical p-bion con-
tributions.

Multi-bion solutions : Nonperturbative contribu-
tions to the ground state energy come from the saddle
points of the path integral Z =

∫
DϕDϕ̃ e−SE ∼ e−βE

(for large β), where we have complexified the degrees of
freedom by regarding ϕ ≡ ϕC

R + iϕC
I and ϕ̃ ≡ ϕC

R − iϕC
I

as independent holomorphic variables, and imposed the
periodic boundary condition ϕ(τ + β) = ϕ(τ) and for

ϕ̃. The Euclidean action SE =
∫ β
0 dτ [∂τϕ∂τ ϕ̃/(g2(1 +

ϕϕ̃)2) + V (ϕϕ̃)] has two conserved Noether charges as-
sociated with the complexification of the Euclidean time
translation τ → τ + a and the phase rotation (ϕ, ϕ̃) →
(eibϕ, e−ibϕ̃) (a, b ∈ C). Using the corresponding con-
servation laws, we can obtain the following solution of
the equation of motion with nontrivial contribution in a
β → ∞ limit,

ϕ = eiφc
f(τ − τc)

sin2 α
, ϕ̃ = e−iφc

f(τ − τc)

sin2 α
, (9)

where (τc,φc) are complex moduli parameters associated
with the symmetry and f(τ) is the elliptic function

f(τ) = cs(Ωτ, k) ≡ cn(Ωτ, k)/sn(Ωτ, k), (10)

E(2) = g2 �m
coth m

g2

sinh2 m
g2

2

4
Ei

⇣
2m
g2

⌘
+ Ei

⇣
� 2m

g2

⌘

2
� � � log

2m

g2

3

5

E(2)
p = 2m

Z 1

0
dte�t

"
(p+ 1)2

t� 2m
g2±i0

+
(p� 1)2

t+ 2m
g2

#
+ 4mp2

✓
� + log

2m

g2
± i⇡

2
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2

Lagrangian

g2L = G
[
|∂tϕ|2 − |mϕ|2 + iψ̄Dtψ

]
− ϵ

∂2µ

∂ϕ∂ϕ̄
ψψ̄, (1)

where ϕ is the inhomogeneous coordinate, G =
∂ϕ∂ϕ̄ log(1 + |ϕ|2) is the Fubini-Study metric, Dt = ∂t +
∂tϕ∂ϕ logG is the pull back of the covariant derivative
and µ = m|ϕ|2/(1 + |ϕ|2) is the moment map associated
with the U(1) symmetry ϕ → eiθϕ. The parameter ϵ is
the boson-fermion coupling and the Lagrangian becomes
supersymmetric at ϵ = 1. Since the fermion number
F = Gψψ̄ commutes with the Hamiltonian, the Hilbert
space can be decomposed into two subspaces with F = 1
and F = 0. By projecting quantum states onto the sub-
space which contains the ground state (F = 1), we obtain
the bosonic Lagrangian L = |∂tϕ|2/(g2(1 + |ϕ|2)2) − V
with the potential

V =
1

g2
m2|ϕ|2

(1 + |ϕ|2)2 − ϵm
1− |ϕ|2

1 + |ϕ|2 . (2)

We note that θ(≡ −2 arctan |ϕ|) = 0,π are global and
metastable vacua respectively.
For ϵ = 1, the ground state wave function Ψ0 preserv-

ing the SUSY is given as a zero energy solution of the
Schrödinger equation

Hϵ=1Ψ0 =

[
−g2(1 + |ϕ|2)2 ∂

∂ϕ

∂

∂ϕ̄
+ Vϵ=1

]
Ψ0 = 0. (3)

It is exactly solved as Ψ0 = ⟨ϕ|0⟩ = exp(−µ/g2). For ϵ ≈
1, the leading order correction to the ground state wave
function can be obtained by expanding the Schrödinger
equation with respect to small δϵ ≡ ϵ − 1 as ⟨ϕ|δΨ⟩.
Correspondingly, the ground state energy E can also be
expanded

E = δϵE(1) + δϵ2 E(2) + · · · . (4)

These expansion coefficients can be determined by the
standard Rayleigh-Schrödinger perturbation theory as
E(1) = ⟨0|δH|0⟩/⟨0|0⟩, E(2) = −⟨δΨ|Hϵ=1|δΨ⟩/⟨0|0⟩, · · ·
with δH = H − Hϵ=1. We find that these coefficients
E(i) are real without imaginary ambiguities and can be
expanded in absolutely convergent power series with re-
spect to the nonperturbative exponential exp(−2m/g2)

E(i) =
∞∑

p=0

E(i)
p exp(−2pm/g2), (5)

where the zero-th term E(i)
0 corresponds to the pertur-

bative contributions on the trivial vacuum (perturbative
vacuum). The coefficients of E(1) [21] are

E(1)
0 = −m+ g2, E(1)

p = −2m, (p ≥ 1). (6)

If the coefficients of E(2) are expanded in powers of g2,
they give factorially divergent asymptotic series, which

can be Borel-resummed. Hence we rewrite the coefficient
in the form of the Borel transform (See Appendix. A for
the details of calculations.) as

E(2)
0 = g2 + 2m

∫ ∞

0
dt

e−t

t− 2m
g2±i0

, (7)

E(2)
p = 2m

∫ ∞

0
dt e−t

{
(p+ 1)2

t− 2m
g2±i0

+
(p− 1)2

t+ 2m
g2

}

+ 4mp2
(
γ + log

2m

g2
± πi

2

)
, (p ≥ 1). (8)

Note that the imaginary ambiguities associated to the

Borel resummation is manifest in the first term of E(2)
p

with g2±i0, which is compensated by the imaginary part

±iπ/2 in the last term of E(2)
p+1, reproducing the original

real E(2) precisely.
We can now recognize the full resurgence structure to

all orders of nonperturbative exponential: imaginary am-
biguity of the non-Borel summable divergent perturba-
tion series on the p-bion background in the first term of

E(2)
p is cancelled by the imaginary ambiguity of the clas-

sical contribution of (p+1)-bion contribution in the last

term of E(2)
p+1. We note the absence of powers of g2 in

the imaginary ambiguity, which will allow us to recover
non-Borel summable perturbation series on the p-bion
background completely from the (p+1)-bion contribution
through the dispersion relation, without computing per-
turbative corrections around the multi-bion background
explicitly. Moreover, if we observe that E(2)/m is an
even function of m/g2, we can also understand the pres-
ence of Borel-summable part (second term of the first
line in Eq.(8)). Thus all the terms can now be repro-
duced through resurgence relation and the sign change
of m/g2, if we can compute all the classical p-bion con-
tributions.

Multi-bion solutions : Nonperturbative contribu-
tions to the ground state energy come from the saddle
points of the path integral Z =

∫
DϕDϕ̃ e−SE ∼ e−βE

(for large β), where we have complexified the degrees of
freedom by regarding ϕ ≡ ϕC

R + iϕC
I and ϕ̃ ≡ ϕC

R − iϕC
I

as independent holomorphic variables, and imposed the
periodic boundary condition ϕ(τ + β) = ϕ(τ) and for

ϕ̃. The Euclidean action SE =
∫ β
0 dτ [∂τϕ∂τ ϕ̃/(g2(1 +

ϕϕ̃)2) + V (ϕϕ̃)] has two conserved Noether charges as-
sociated with the complexification of the Euclidean time
translation τ → τ + a and the phase rotation (ϕ, ϕ̃) →
(eibϕ, e−ibϕ̃) (a, b ∈ C). Using the corresponding con-
servation laws, we can obtain the following solution of
the equation of motion with nontrivial contribution in a
β → ∞ limit,

ϕ = eiφc
f(τ − τc)

sin2 α
, ϕ̃ = e−iφc

f(τ − τc)

sin2 α
, (9)

where (τc,φc) are complex moduli parameters associated
with the symmetry and f(τ) is the elliptic function

f(τ) = cs(Ωτ, k) ≡ cn(Ωτ, k)/sn(Ωτ, k), (10)

E(2) = g2 �m
coth m

g2

sinh2 m
g2

2

4
Ei

⇣
2m
g2

⌘
+ Ei

⇣
� 2m

g2

⌘

2
� � � log

2m

g2

3
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E(2)
p = 2m

Z 1

0
dte�t
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2

Lagrangian

g2L = G
[
|∂tϕ|2 − |mϕ|2 + iψ̄Dtψ

]
− ϵ

∂2µ

∂ϕ∂ϕ̄
ψψ̄, (1)

where ϕ is the inhomogeneous coordinate, G =
∂ϕ∂ϕ̄ log(1 + |ϕ|2) is the Fubini-Study metric, Dt = ∂t +
∂tϕ∂ϕ logG is the pull back of the covariant derivative
and µ = m|ϕ|2/(1 + |ϕ|2) is the moment map associated
with the U(1) symmetry ϕ → eiθϕ. The parameter ϵ is
the boson-fermion coupling and the Lagrangian becomes
supersymmetric at ϵ = 1. Since the fermion number
F = Gψψ̄ commutes with the Hamiltonian, the Hilbert
space can be decomposed into two subspaces with F = 1
and F = 0. By projecting quantum states onto the sub-
space which contains the ground state (F = 1), we obtain
the bosonic Lagrangian L = |∂tϕ|2/(g2(1 + |ϕ|2)2) − V
with the potential

V =
1

g2
m2|ϕ|2

(1 + |ϕ|2)2 − ϵm
1− |ϕ|2

1 + |ϕ|2 . (2)

We note that θ(≡ −2 arctan |ϕ|) = 0,π are global and
metastable vacua respectively.
For ϵ = 1, the ground state wave function Ψ0 preserv-

ing the SUSY is given as a zero energy solution of the
Schrödinger equation

Hϵ=1Ψ0 =

[
−g2(1 + |ϕ|2)2 ∂

∂ϕ

∂

∂ϕ̄
+ Vϵ=1

]
Ψ0 = 0. (3)

It is exactly solved as Ψ0 = ⟨ϕ|0⟩ = exp(−µ/g2). For ϵ ≈
1, the leading order correction to the ground state wave
function can be obtained by expanding the Schrödinger
equation with respect to small δϵ ≡ ϵ − 1 as ⟨ϕ|δΨ⟩.
Correspondingly, the ground state energy E can also be
expanded

E = δϵE(1) + δϵ2 E(2) + · · · . (4)

These expansion coefficients can be determined by the
standard Rayleigh-Schrödinger perturbation theory as
E(1) = ⟨0|δH|0⟩/⟨0|0⟩, E(2) = −⟨δΨ|Hϵ=1|δΨ⟩/⟨0|0⟩, · · ·
with δH = H − Hϵ=1. We find that these coefficients
E(i) are real without imaginary ambiguities and can be
expanded in absolutely convergent power series with re-
spect to the nonperturbative exponential exp(−2m/g2)

E(i) =
∞∑

p=0

E(i)
p exp(−2pm/g2), (5)

where the zero-th term E(i)
0 corresponds to the pertur-

bative contributions on the trivial vacuum (perturbative
vacuum). The coefficients of E(1) [21] are

E(1)
0 = −m+ g2, E(1)

p = −2m, (p ≥ 1). (6)

If the coefficients of E(2) are expanded in powers of g2,
they give factorially divergent asymptotic series, which

can be Borel-resummed. Hence we rewrite the coefficient
in the form of the Borel transform (See Appendix. A for
the details of calculations.) as

E(2)
0 = g2 + 2m

∫ ∞

0
dt

e−t

t− 2m
g2±i0

, (7)

E(2)
p = 2m

∫ ∞

0
dt e−t

{
(p+ 1)2

t− 2m
g2±i0

+
(p− 1)2

t+ 2m
g2

}

+ 4mp2
(
γ + log

2m

g2
± πi

2

)
, (p ≥ 1). (8)

Note that the imaginary ambiguities associated to the

Borel resummation is manifest in the first term of E(2)
p

with g2±i0, which is compensated by the imaginary part

±iπ/2 in the last term of E(2)
p+1, reproducing the original

real E(2) precisely.
We can now recognize the full resurgence structure to

all orders of nonperturbative exponential: imaginary am-
biguity of the non-Borel summable divergent perturba-
tion series on the p-bion background in the first term of

E(2)
p is cancelled by the imaginary ambiguity of the clas-

sical contribution of (p+1)-bion contribution in the last

term of E(2)
p+1. We note the absence of powers of g2 in

the imaginary ambiguity, which will allow us to recover
non-Borel summable perturbation series on the p-bion
background completely from the (p+1)-bion contribution
through the dispersion relation, without computing per-
turbative corrections around the multi-bion background
explicitly. Moreover, if we observe that E(2)/m is an
even function of m/g2, we can also understand the pres-
ence of Borel-summable part (second term of the first
line in Eq.(8)). Thus all the terms can now be repro-
duced through resurgence relation and the sign change
of m/g2, if we can compute all the classical p-bion con-
tributions.

Multi-bion solutions : Nonperturbative contribu-
tions to the ground state energy come from the saddle
points of the path integral Z =

∫
DϕDϕ̃ e−SE ∼ e−βE

(for large β), where we have complexified the degrees of
freedom by regarding ϕ ≡ ϕC

R + iϕC
I and ϕ̃ ≡ ϕC

R − iϕC
I

as independent holomorphic variables, and imposed the
periodic boundary condition ϕ(τ + β) = ϕ(τ) and for

ϕ̃. The Euclidean action SE =
∫ β
0 dτ [∂τϕ∂τ ϕ̃/(g2(1 +

ϕϕ̃)2) + V (ϕϕ̃)] has two conserved Noether charges as-
sociated with the complexification of the Euclidean time
translation τ → τ + a and the phase rotation (ϕ, ϕ̃) →
(eibϕ, e−ibϕ̃) (a, b ∈ C). Using the corresponding con-
servation laws, we can obtain the following solution of
the equation of motion with nontrivial contribution in a
β → ∞ limit,

ϕ = eiφc
f(τ − τc)

sin2 α
, ϕ̃ = e−iφc

f(τ − τc)

sin2 α
, (9)

where (τc,φc) are complex moduli parameters associated
with the symmetry and f(τ) is the elliptic function

f(τ) = cs(Ωτ, k) ≡ cn(Ωτ, k)/sn(Ωτ, k), (10)

E(2) = g2 �m
coth m

g2

sinh2 m
g2

2
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⇣
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θ is the phase of the complexified coupling g2 = |g2|eiθ.
The imaginary ambiguity of the bion contribution de-
pends on an infinitely small sign of this phase. It is no-
table that the contribution in (.13) vanishes at ϵ = 1,
which is consistent with the supersymmetry.
The results on the bion solutions are easily extended

to CPN−1 models. In complexified CPN−1 models with
fermionic degrees of freedom, we have N real bion and N
complex bion solutions. The real bions for this case are
given by

ϕi =

√
ω2
i

Nmiϵg2
eiφ0

sinhωi(τ − τ0)
, (.14)

with ωi = mi

√
1 +Nϵg2/mi. The complex bions are

given by

ϕi =

√
ω2
i

Nmiϵg2
eiφ0

coshωi(τ − τ0)
, ϕ̃i = −ϕ̄i . (.15)

For this case, the effective potential between the BPS
components in bion configuration is modified as

Veff ≈ 2mi

g2
− 4mi

g2
e−miτr cosφr + 2ϵ′miτr , (.16)

with ϵ′ = 1 + 1
2 (ϵ − 1)N . By performing the Lefschetz

thimble integral (quasi moduli integral) based on this
effective potential, we derive the contributions from N
real and complex bions to the ground state energy

Ebion = −
N−1∑

i=1

2mi

(
g2

2mi

)2(ϵ′−1)
sin ϵ′π

π
Γ (ϵ′)

2
e
− 2mi

g2

×
{

eπiϵ for θ = −0
e−πiϵ for θ = +0

.(.17)

Again, the imaginary ambiguity of the bion contribution
depends on a sign of the phase of complexified coupling
constant g2 = |g2|eiθ. The contribution vanishes at ϵ′ =
ϵ = 0, which agrees with the supersymmetry.

Contribution from Perturbative vacuum : We
here focus on the CP 1 model. To derive a perturba-
tive series of the ground state energy, we redefine the
wave function and the coordinate as ψ = e−x2

Ψ(x), |ϕ| =
ηx, η ≡ g√

m
. Then, the Hamiltonian becomes

H̃

m
= −1

4
(1 + η2x2)2

{
∂2x + (1− 4x2)

1

x
∂x

}
+ V (x),(.18)

where the potential is

V (x) = (1− x2)(1 + η2x2)2 +
x2

(1 + η2x2)2
− ϵ

1− η2x2

1 + η2x2
.(.19)

We expand the energy and the wave function with re-
spect to η as E

m =
∑∞

l=0 Alη2l,Ψ =
∑∞

l=0 Ψl(x)η2l. The

Schrödinger equation (H̃ − E)Ψ = 0 is expanded by

l

= 1+

= 0+

= 2+
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Fig. 2: The asymptotic behavior of the ratio

Al/
[

1
2l−1

Γ(l+2(1−ϵ))
Γ(1−ϵ)2

]
(l ≤ 100) for 0 ≤ ϵ ≤ 2. δ is a

regularization parameter (δ = 10−10).

Al and Ψl with Ψl = 0 for l < 0. Setting Ψ0 = 1,
we solve equations order by order, and find that Ψl are
polynomials of the form Ψl =

∑2l
k=0 Bl,kx2k. Then, the

Schrödinger equation reduces to the recursion relation
called Bender-Wu recursion relation,

0 =
4∑

i=0

(
4
i

)[
(k − i+ 1)2Bl−i,k−i+1

− (2k − 2i+ 1)Bl−i,k−i +Bl−i,k−i−1

]

+
l∑

i=1

Ai(Bl−i,k + 2Bl−i−1,k−1

+ Bl−i−2,k−2)−Bl,k−1 + ϵ(Bl,k −Bl−2,k−2),(.20)

where Bl,k = 0 if l < 0, k < 0, k > 2l.
We now obtain Al in Epert = m

∑∞
l=0 Alη2l. As shown

in Fig. 2 it has the asymptotic behavior

Al ∼ − 1

2l−1

Γ(l + 2(1− ϵ))

Γ(1− ϵ)2
. (.21)

Now, we introduce Borel transform and Borel resum-
mation. The Borel resummation of Epert gives an an-
alytic function which has Epert as an asymptotic se-
ries. Firstly, the Borel transform B[Epert](t) of the series
Epert(η2) =

∑∞
l=0 Elη2l is defined as

B[Epert](t) =
∞∑

l=0

Fl

l!
tl , (.22)

where t ∈ C is a Borel parameter. Note, in the present
case (and lots of other examples), the Borel transform
B[Epert] has singularities on the real and positive axis on
the Borel plane of t. Now, the (lateral) Borel resumma-
tion is defined as

S±Epert(η
2) =

1

η2

∫ e±iδ∞

0
B[Epert](t)e

−t/η2

dt , (.23)

with δ is a infinitely small number. Since the Borel trans-
form has singularities on the real and positive axis, we

Bender-Wu法による高次摂動係数 

完全なリサージェンス構造 in twisted CP1
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g2R
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g2R
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�mxr + 2mxr

1

g2R
=

1

g2
� 1
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logL⇤0
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which contains the ordinary one-instanton BPS solution (Q = 1) in the limit of small separation

of two fractional instantons is given by

HII
0 (z) =

(
λ1e

iφ1e−
πz
L + λ2e

iφ2e
πz
L , 1

)
. (104)

This is a composite of (a) and (d) in Fig.10. The inhomogeneous coordinate of CP 1 now reads

HII
1

HII
2

=
HII

0,1

HII
0,2

= λ1e
−πx1

L ei(φ1−πx2
L ) + λ2e

πx1
L ei(φ2+

πx2
L ), (105)

which cannot satisfy the assumption (96) of the Scherk-Schwarz reduction. This is because in

the reduced sine-Gordon model a configuration starting from N and ending at S [(a) in Fig. 10]

cannot be connected to another configuration starting from N and ending at S [(d) in Fig. 10]. The

former can be connected only to a configuration starting from S and ending at N. Therefore the

BPS two fractional instanton solution cannot be described by the sine-Gordon quantum mechanics

even in the limit of small L. More generally, all the BPS multi-fractional-instanton solutions are

inconsistent with the Scherk-Schwarz reduction and hence the sine-Gordon quantum mechanics

fails to capture them. This is consistent with the fact that configurations containing n-instantons

(n ≥ 2) are always non-BPS in the sine-Gordon quantum mechanics.

s(x1, x2)

x

y

0

2

4

42
0

0

1

−1

−2−4

x1

x2

x1

)

0

2

4

−4 40 2−2

s(x1, x2)

FIG. 11: The euclidean action density s(x1, x2) of neutral bion configurations for λ1 = 1/1000,λ2 = 1/1000

and φ = π/4 in the CP 1 model on R1 × S1. The same action density is depicted in two ways, as a function

of x1, x2 (left) and x1 (right). There is no x2 dependence in the action density, with x2 being a coordinate

of the compactied dimension.

Next let us consider the non-BPS configuration of neutral bion, which is a composite of a

fractional instanton and a fractional anti-instanton as depicted in Fig. 11. We can write down an
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繰り込みまで含めたリサージェンス構造
[Fujimori, Kamata, TM, Nitta, Sakai(18)]

ゼータ関数を用いて 

KK modeの足し上げを行う
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Perturbative imaginary 
ambiguity

Non-perturbative 
effect

Tatsuhiro Misumi

I. RESURGENCE

F [z,ϕ(z), ...,ϕ(k)(z)] = 0 (1)

z ∼ 1

g2
(2)

Φ0(z) =
∑

q

aqz
−q (3)

e−nAzΦn(z) (4)

ϕ±(z;σ) = S±Φ0(z) +
∑

n

σne−nAzS±Φn(z) (5)

S+Φ0(z)− S−Φ0(z) ≈ se−AzSΦ1(z) (6)

Sθ = Id−Discθ = exp
[∑

e−ωθz∆ωθ

]
(7)

e−ωθz∆ωθϕ(z;σ) ∝ ∂σϕ(z;σ) (8)

SθΦn = exp[e−Az∆A]Φn =
∞∑

l=0

(
n+ l
n

)
s1e

−lAzΦn+l (9)

In a certain class of QFT as twisted CPN-1 models
QFT can be defined based on the structure.

Resurgent structure in QM and QFT

z =
1

g2

問題は，コンパクト化半径の大小の間で相転移が生じずに，
上記の構造が保たれるか否か．



Anomaly matching for CPN-1 models

�Plan : gauge the flavor symmetry and do T transformation
�we first gauge SU(N), then find ZN 1-form symmetry should be gauged.

flavor time reversal

Since B(2) is a gauge-field on MD while Ah is a (D + 1)-dimensional topological theory,
we obtain Ah[B(2)] = 0. This means that the trivial boundary condition eliminates the
anomaly of (D + 1) dimensions. Two-form gauge fields B(2) on MD are not enough for
anomaly.

In our construction, the zero-form transformation � on Polyakov-loop ⌦ is translated
into the faithful symmetry generated by S on fields of QFT via (2.4). The appearance of
the faithful zero-form symmetry �S allows us to introduce the �S-gauge field B(1). Since
�S and � is intertwined in (D + 1) dimensions, it is built into the (D + 1)-dimensional
two-form gauge field B as a form B(1) ^ L�1dxD+1. Therefore, the ’t Hooft anomaly can
survive even if the original theory has no one-form symmetry.

3 ZN -twisted CPN�1 sigma model

As a demonstration of the systematic procedure in Sec. 2, we calculate the anomaly of
ZN -twisted CPN�1 model starting from the two-dimensional ’t Hooft anomaly. Two-
dimensional CPN�1 sigma model can be realized as a gauged linear sigma model,

S =

Z
d2x


1

2
|(@µ + iaµ)~z|2 +

�

4
(|~z|2 � µ2)2

�
� i✓

2⇡

Z
da, (3.1)

where ~z = (z1, . . . , zN ) is an N -component complex vector-valued fields, and a is the U(1)-
gauge field3. We study theta-dependence of this theory from the viewpoint of anomaly. We
start with the two-dimensional discussion [18] first, and move to the circle compactification
with ZN -twisted boundary condition. In order to understand the formalism better, we
follow each of the steps explained in Sec. 2.1 in detail.

3.1 ’t Hooft anomaly and global inconsistency in two dimensions

The symmetry of this theory (3.1) consists of the following [18]:

• Flavor symmetry, SU(N)/ZN , which is given by ~z 7! U~z with U 2 SU(N).

• Time-reversal symmetry T at ✓ = 0,⇡.

Since the U(1) symmetry is gauged, the center elements of SU(N) cannot act faithfully
on gauge-invariant operators. The flavor symmetry with the faithful representation is thus
given by SU(N)/ZN . In the notation used in Sec. 2, we have the following correspondence:
G = SU(N)/ZN , eG = SU(N), � = ZN , and H = T.

We introduce the background gauge field for flavor SU(N)/ZN symmetry. Such a
background gauge field consists of two ingredients: SU(N) gauge field A and ZN two-form
gauge field B. To explain it, let us first gauge the SU(N) symmetry, then the action
obtained by the minimal coupling becomes

Sgauged =

Z
d2x


1

2
|(@µ + iaµ � iAµ)~z|2 + V (|~z|2)

�
� i✓

2⇡

Z
da, (3.2)

3
In this paper, we use the lower-case for dynamical gauge fields and the upper-case for background, or

classical, gauge fields.
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where V (|~z|2) = �
4 (|~z|

2 � µ2)2. Flavor symmetry SU(N) is gauged and no longer a global
symmetry, but the theory acquires the one-form symmetry: Considering the U(1) and
SU(N) Wilson lines,

WU(1)(C) = exp

✓
i

Z

C
a

◆
, WSU(N)(C) = tr


P exp

✓
i

Z

C
A

◆�
, (3.3)

then the theory has a symmetry under the simultaneous ZN rotation,

WU(1)(C) 7! e2⇡i/NWU(1)(C), WSU(N)(C) 7! e2⇡i/NWSU(N)(C). (3.4)

The Wilson lines charged under this ZN one-form symmetry must be dropped from the
spectrum of genuine line operators if we appropriately gauge the flavor SU(N)/ZN sym-
metry [61, 62]. For this purpose, we introduce the ZN two-form gauge field B, and then we
obtain

Z✓[(A,B)] =

Z
DaD~z exp


�
Z

d2x

✓
1

2
|(@µ + iaµ � iAµ)~z|2 + V (|~z|2)

◆
+

i✓

2⇡

Z
(da+B)

�
.

(3.5)
At ✓ = ⇡, we consider the time-reversal transformation under the background flavor

gauge field (A,B), and we obtain [18]

Z⇡[T · (A,B)] = Z⇡[(A,B)]e�i
R
B. (3.6)

We should check whether this anomaly is genuine or fake, so we consider whether it can be
canceled by local counter terms of B. The topological ZN two-form gauge theory is given
by ik

R
B with some integer k modulo N , and it is a candidate for the counterterm. The T

transformation after adding this counterterm behaves as

Z⇡[T · (A,B)] exp

✓
�ik

Z
T ·B

◆
= Z⇡[(A,B)] exp

✓
�ik

Z
B

◆
ei(2k�1)

R
B. (3.7)

Thus, anomaly is fake if and only if 2k = 1 modulo N . For even N , this is impossible and
we find the ’t Hooft anomaly between the flavor and time-reversal symmetries.

For odd N , we can eliminate the anomaly by choosing k = (N + 1)/2 modulo N , and
no ’t Hooft anomaly exists. If we do the same computation at ✓ = 0, the time-reversal
symmetry is respected by choosing k = 0, and thus there is no common counterterm k that
respects T both at ✓ = 0,⇡. This is the global inconsistency condition, and we can derive a
nontrivial consequence although it is slightly weaker than ’t Hooft anomaly matching (see
Ref. [24] for global inconsistency condition).

In two dimensions, Coleman–Mermin–Wagner theorem [64, 65] tells us that flavor
symmetry with a continuous parameter cannot be broken. This naturally gives us the
nonperturbative data that time-reversal symmetry at ✓ = ⇡ is spontaneously broken for
two-dimensional CPN�1 model.
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Let us look into mixed ’t Hooft anomaly between

Komargodski, Sharon, Thorngren, Zhou (17)
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For odd N, we find global inconsistency between θ = 0, π

It suggests spontaneous breaking of T 



�Introducing ZN twisted boundary condition on S1

we have an intertwined ZN 0-form shift symmetry 

ZN-twisted CPN-1 models at θ = π on R × S1

flavor rotation ZN 0-form transf.
&

For each ⌦ 2 eG that is uniform on MD, we obtain a D-dimensional QFT on MD, and
denote its partition function as Z⌦. This is equivalent to imposing a twisted boundary
condition on fields of QFT along S1 by performing a boundary-condition-changing eG-gauge
transformation, but we keep the periodic boundary condition with nontrivial holonomy
⌦ during our explanation of the general strategy. Before introducing the two-form gauge
field B, we originally have (D + 1)-dimensional one-form symmetry �, and it induces D-
dimensional zero-form and one-form symmetries � after circle compactification when A

is dynamical. The zero-form symmetry �(= ZN ) acts as tr(⌦n) 7! !ntr(⌦n) with some
! 2 � \ {1}, and we thus identify2 its action on ⌦ itself as ⌦ 7! !⌦. However, since we
define the theory Z⌦ by fixing the eG holonomy ⌦, the above transformation ⌦ 7! !⌦ maps
one theory Z⌦ to another theory Z!⌦: It is not the symmetry of Z⌦.

In order to have a nontrivial anomaly on MD, we need to have a symmetry involving
the above zero-form transformation, ⌦ 7! !⌦. We specify the eG holonomy ⌦ such that
there exists S 2 eG satisfying

S⌦S�1 = !⌦ . (2.4)

Since S is not an element of the center Z( eG) of eG by definition, S 62 �. Recall that
G = eG/� acts faithfully on the physical Hilbert space, and it means that S generates a
faithful symmetry of QFT, which we call a “shift symmetry”. When the shift symmetry
S acts on fields, the holonomy matrix ⌦ is changed to S⌦S�1. The requirement (2.4)
states that the symmetry generated by S is intertwined with the zero-form symmetry �,
⌦ 7! !�1⌦, in order to maintain the holonomy ⌦, and the symmetry of Z⌦ is obtained: We
denote this zero-form symmetry � generated by S as �S in order to distinguish it from the
original one, � ⇢ Z( eG). Because of (2.4), ⌦ cannot be proportional to the identity matrix:
Typical example of ⌦ and S satisfying (2.4) is (! = e2⇡i/N )

⌦ = !�(N�1)/2

0

BBBBBB@

1 0 0 · · · 0

0 ! 0 · · · 0

0 0 !2 · · · 0
...

...
...

...
0 0 0 · · · !N�1

1

CCCCCCA
, S =

0

BBBBBB@

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

1 0 0 · · · 0

1

CCCCCCA
. (2.5)

Since the flavor symmetry of D-dimensional theory must commute with ⌦, flavor symmetry
eG might be explicitly broken to a maximal Abelian subgroup eK as eG ! eK. Symmetry
with the faithful representation is again given by the quotient K = eK/�. Let us assume
that H is not explicitly broken by fixing ⌦, then the D-dimensional effective theory Z⌦ has
three symmetries; shift symmetry �S , flavor symmetry K, and H.

Let us try to introduce the background gauge fields for �S and K. We denote the
�S-gauge field as B(1) that is locally a one-form on MD. The K-gauge field consists of two
ingredients:

• eK-gauge field AK that is locally a one-form on MD.
2
This identification is not gauge-invariant since ⌦ itself is not. To justify it, we regard that the Polyakov

gauge is taken for eG-gauge field A.
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The last equality holds modulo 2⇡i5. This means that the (Z2N )axial symmetry under the
background gauge field (A,B) is broken as

Z[(A,B)] 7! Z[(A,B)] exp

✓
�2iN

4⇡

Z
B ^B

◆
. (4.10)

For N � 3, this additional phase is nontrivial, and the ’t Hooft anomaly exists between the
flavor symmetry SU(N)flavor/(ZN )color�flavor and the discrete axial symmetry (Z2N )axial.
Four-dimensional QCD is believed to break the chiral symmetry spontaneously, which also
breaks Z2N axial symmetry to Z2 = {1, (�1)F } spontaneously (F is the fermion number
operator), and the ’t Hooft anomaly is matched.

4.2 Massless ZN -QCD and its anomaly

We compactify one-direction, and derive the associated three-dimensional effective theory.
We fix the SU(N)flavor holonomy as6

⌦ = ei�diag[1,!,!2, . . . ,!N�1]. (4.11)

Equivalently, we introduce the boundary condition on the quark field  as

 (x, x4 + L) =  (x, x4)⌦. (4.12)

The extended gauge transformation eliminates the holonomy, but the quark field obeys
the ZN -twisted boundary condition. This is called ZN -QCD, and we denote its partition
function as Z⌦.

Circle compactification induces ZN zero-form transformation, ⌦ 7! !⌦, from the ZN

one-form symmetry (4.4), but it changes the boundary condition and maps a theory Z⌦

to another theory Z!⌦. We should intertwine it with the flavor rotation  7!  S, where
S is defined in (2.5), in order to maintain the boundary condition. This generates the ZN

zero-form symmetry of Z⌦, and we call this as the shift symmetry, (ZN )S , which acts on
local operators on R3 as

 7!  S, tr


P exp i

Z

S1
a

�
7! ! tr


P exp i

Z

S1
a

�
. (4.13)

To obtain the three-dimensional anomaly, we gauge the shift symmetry and denote the
corresponding gauge field as B(1). Because of the holonomy ⌦, the explicit breaking of
the flavor symmetry occurs SU(N)flavor ! U(1)N�1, and the faithful flavor symmetry is
U(1)N�1/(ZN )color�flavor. We introduce the U(1)N�1 background gauge field AK and three-
dimensional ZN two-form gauge field B(2). The ZN -twisted partition function under these
backgrounds are given by

Z⌦[(AK , B(1), B(2))] = Z[(AK +B(1) +Acl, B
(2) +B(1) ^ L�1dx4)]. (4.14)

5
For details of this computation, the related calculations are available in Ref. [17] in the almost same

convention.
6
Only if � takes a special value, ⌦ 2 SU(N). We can, however, perform the twist using the vector-like

U(1) symmetry, which does not affect the argument below. The following discussion is valid for any �.
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3.2 ZN -twisted CPN�1
model and its anomaly

We consider the circle compactification from R2 to R⇥ S1 3 (x1, x2), where the circumfer-
ence L of the circle S1, i.e. x2 ⇠ x2+L, is regarded to be small. We impose the ZN -twisted
boundary condition,

~z(x1, x2 + L) = ⌦~z(x1, x2), (3.8)

where (! = e2⇡i/N )
⌦ = diag(1,!, . . . ,!N�1). (3.9)

We call this as ZN -twisted CPN�1 sigma model, and we denote its partition function at ✓

as Z✓,⌦.
For our purpose, it is better to regard this twisting matrix ⌦ as a holonomy of SU(N)

gauge field A along compactified direction. Indeed, the boundary-condition-changing SU(N)

gauge transformation makes the boundary condition of ~z periodic (up to U(1) gauge sym-
metry) and the price to be paid is the background SU(N) holonomy / ⌦. When SU(N)

is gauged, there is a ZN one-form symmetry and it induces the ZN zero-form symmetry,
⌦ 7! !⌦. What is special for this choice of the nontrivial holonomy ⌦ is that the above ZN

transformation induces the symmetry given by

~z =

0

BBBBBB@

z1
z2
...

zN�1

zN

1

CCCCCCA
7! S~z =

0

BBBBBB@

z2
z3
...
zN
z1

1

CCCCCCA
, S =

0

BBBBBB@

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

1 0 0 · · · 0

1

CCCCCCA
. (3.10)

We call this a shift symmetry, and it is a faithful transformation on the physical spectrum.
As an example, a gauge-invariant operator |z1|2 is mapped to another gauge-invariant op-
erator |z2|2. When the transformation S is performed as ~z 7! ~z0 = S~z, the boundary
condition for the transformed field becomes

~z0(x1, x2 + L) = S⌦S�1~z0(x1, x2) = !⌦~z0(x1, x2). (3.11)

That is, the ZN zero-form symmetry on the Polyakov loop ⌦ is intertwined with the shift
symmetry ZN generated by S in order to maintain the boundary condition (3.8), and we
call it (ZN )S . The symmetry (ZN )S acts on local operators on R as

~z 7! S~z, exp

✓
i

Z

S1
a

◆
7! !�1 exp

✓
i

Z

S1
a

◆
. (3.12)

We give a short summary of the situation: The compactified theory obtained here has
a (ZN )S zero-form symmetry, and it is induced by the ZN one-form symmetry in two
dimensions when SU(N) is gauged. Continuous part of the flavor symmetry is explicitly
broken to U(1)N�1/ZN , but it is not relevant for the following discussion and we do not
introduce gauge fields for it.

As a result, the ’t Hooft anomaly (or global inconsistency) in two dimensions has
the same meaning in the ZN -twisted CPN�1 model on R ⇥ S1. The ZN -twisted CPN�1
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For each ⌦ 2 eG that is uniform on MD, we obtain a D-dimensional QFT on MD, and
denote its partition function as Z⌦. This is equivalent to imposing a twisted boundary
condition on fields of QFT along S1 by performing a boundary-condition-changing eG-gauge
transformation, but we keep the periodic boundary condition with nontrivial holonomy
⌦ during our explanation of the general strategy. Before introducing the two-form gauge
field B, we originally have (D + 1)-dimensional one-form symmetry �, and it induces D-
dimensional zero-form and one-form symmetries � after circle compactification when A

is dynamical. The zero-form symmetry �(= ZN ) acts as tr(⌦n) 7! !ntr(⌦n) with some
! 2 � \ {1}, and we thus identify2 its action on ⌦ itself as ⌦ 7! !⌦. However, since we
define the theory Z⌦ by fixing the eG holonomy ⌦, the above transformation ⌦ 7! !⌦ maps
one theory Z⌦ to another theory Z!⌦: It is not the symmetry of Z⌦.

In order to have a nontrivial anomaly on MD, we need to have a symmetry involving
the above zero-form transformation, ⌦ 7! !⌦. We specify the eG holonomy ⌦ such that
there exists S 2 eG satisfying

S⌦S�1 = !⌦ . (2.4)

Since S is not an element of the center Z( eG) of eG by definition, S 62 �. Recall that
G = eG/� acts faithfully on the physical Hilbert space, and it means that S generates a
faithful symmetry of QFT, which we call a “shift symmetry”. When the shift symmetry
S acts on fields, the holonomy matrix ⌦ is changed to S⌦S�1. The requirement (2.4)
states that the symmetry generated by S is intertwined with the zero-form symmetry �,
⌦ 7! !�1⌦, in order to maintain the holonomy ⌦, and the symmetry of Z⌦ is obtained: We
denote this zero-form symmetry � generated by S as �S in order to distinguish it from the
original one, � ⇢ Z( eG). Because of (2.4), ⌦ cannot be proportional to the identity matrix:
Typical example of ⌦ and S satisfying (2.4) is (! = e2⇡i/N )

⌦ = !�(N�1)/2

0

BBBBBB@

1 0 0 · · · 0

0 ! 0 · · · 0

0 0 !2 · · · 0
...

...
...

...
0 0 0 · · · !N�1

1

CCCCCCA
, S =

0

BBBBBB@

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

1 0 0 · · · 0

1

CCCCCCA
. (2.5)

Since the flavor symmetry of D-dimensional theory must commute with ⌦, flavor symmetry
eG might be explicitly broken to a maximal Abelian subgroup eK as eG ! eK. Symmetry
with the faithful representation is again given by the quotient K = eK/�. Let us assume
that H is not explicitly broken by fixing ⌦, then the D-dimensional effective theory Z⌦ has
three symmetries; shift symmetry �S , flavor symmetry K, and H.

Let us try to introduce the background gauge fields for �S and K. We denote the
�S-gauge field as B(1) that is locally a one-form on MD. The K-gauge field consists of two
ingredients:

• eK-gauge field AK that is locally a one-form on MD.
2
This identification is not gauge-invariant since ⌦ itself is not. To justify it, we regard that the Polyakov

gauge is taken for eG-gauge field A.
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ZN 0-form shift symmetry (ZN)S

model has the shift symmetry (ZN )S and the time-reversal symmetry T at ✓ = 0,⇡. We
introduce the ZN one-form gauge field B(1) for gauging (ZN )S , which is independent of x2.
Since (ZN )S is intertwined with the ZN zero-form symmetry acting on the SU(N) and U(1)

Polyakov loops, we can embed it into the ZN two-form gauge field B in the two-dimensional
language by setting B = B(1) ^ L�1dx2. The two-dimensional anomaly (3.6) tells us that

Z⇡,⌦[T ·B(1)] = Z⇡,⌦[B
(1)] exp

✓
�i

Z
B(1)

Z L

0
L�1dx2

◆

= Z⇡,⌦[B
(1)] exp

✓
�i

Z
B(1)

◆
. (3.13)

We find that (ZN )S and T at ✓ = ⇡ has an ’t Hooft anomaly (or global inconsistency
depending on even or odd N), and either of them must be spontaneously broken.

For usual periodic boundary condition, it means that we put A = 0 and thus there
is no room to introduce B. Therefore, we cannot obtain ’t Hooft anomaly in such cases.
The emergence of ZN symmetry by the twisted boundary condition is essential for a deep
connection with two-dimensional anomaly.

3.3 Comparison with previous studies and Discussion

The ✓-angle dependence of CPN�1 model in two dimensions is studied in large-N limit [66,
67], and the ground state energy should behave as

E(✓) / min
k2Z

1

N
(✓ + 2⇡k)2. (3.14)

This behavior matches the ’t Hooft anomaly (3.6), because the time-reversal symmetry
is spontaneously broken at ✓ = ⇡. Our derivation of the anomaly (3.13) for ZN -twisted
CPN�1 model claims that the same multi-branch structure would naturally appear under
adiabatic circle compactification.

Indeed, ✓-dependence of ZN -twisted CPN�1 model is studied in Refs. [36, 37]. Under
the twisted boundary condition, there are N types of fractional instantons which has the
topological charge 1/N . As a result, the quasi-ground states are composed of N states and
the k-th ground-state energy behaves as

Ek(✓) / �N cos

✓
✓ + 2⇡k

N

◆
. (3.15)

The ground state energy is thus given by minimum of these,

E(✓) = min
k=1,...,N

Ek(✓). (3.16)

We can see that the time-reversal symmetry is spontaneously broken at ✓ = ⇡, which sat-
isfies matching of ’t Hooft anomaly or global inconsistency (3.13). What we have shown in
this paper is that these two behaviors (3.14) and (3.15) are both consistent with anomalies,
and those anomalies have essentially the same origin.

We argue that this observation gives a positive support for the adiabatic continuity.
For ZN -twisted CPN�1 model, it is rigorously shown that expectation values of any SU(N)

invariant operators does not depend on L in the large-N limit [50], and our consideration
on anomaly gives a complementary and consistent analysis.
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Mixed ‘t Hooft anomaly of (ZN)S and T survives in compactified theory !

U(1) 1-form gauge field

Question: does this anomaly survive for compactified theory ?

Tanizaki TM, Sakai (17),



◆Question 1 : ZN (phase) transition for pbc

Main questions

- 2nd-order phase transition expected in large-N
- it should be crossover for finite N since ZN

We will check it directly in numerical study 

|<P>| ~ 0 for small β    →     |<P>| ≠ 0 for large β

- Fractional instantons yield transition between classical N-vacua
- makes ZN stable, leading to volume indep. of vacuum structure 

We will show quite suggestive results on fractional 
instantons and adiabatic continuity

◆Question 2 : Continuity and fractional instantons for ZN-tbc

|<P>| ~ 0 for small β    →    still |<P>| ~ 0 for large β

?

?
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Setup of lattice simulation

・Lattice formulation

Over heat-bath algorithm is adopted to update this θ

Λͯͬ࢖ɺࠓɺ࣮Ͱ਺͑ͯ̎ͭͷࣗ༝৔͕͍ΔͷͰɺc = 2ΑΓɺ

E0 =
π

3Lτ
(12)

Λ͏࢖ͱɺ௿ԹͰ͸ɺLCP ͔Β͘ΔΤωϧΪʔ͸

ECP (Lτ ) =
f(ΛCPLτ )

Lτ
+ E0 (13)

ͱͳΔɻ͜͜Ͱɺୈ߲̎͸શͯͷ৔ ba͕massiveʹͳ͍ͬͯΔCPN−1ϥά
ϥϯδΞϯͷد༩ͰɺmassiveͳͨΊʹࢦ਺ؔ਺ͰαϓϨε͞Ε͍ͯΔɻҰ
ํͰߴԹͰ͸ɺcompact CPN−1 ໛ܕʹ͓͚ΔΧγϛΞΤωϧΪʔͱͯ͠ɺ
finite-Nͷ࣌ orientation moduliͷد༩Ͱ͋Δෳૉ (N − 1)εΧϥʔͷد༩ͷ
Έ͕࢒Γ

ECP (Lτ ) = −(N − 1)
π

3Lτ
(14)

ͱͳΔɻ(Shifman͸ large-NΛ͍ͯͯ͑ߟɺ܎਺ΛNͱ͍ͯ͠Δ͔ɺposition
moduli͔Βͷد༩E0΋Ճ͑ͯN ͱ͍ͯ͠Δɻ)
͜ΕΒΛࣜ (7)ͷࢦ਺ʹ୅ೖ͢ΔͱɺCPN−1໛ܕͷϥάϥϯδΞϯʹର

Ԡ͢Δ෦෼͸ɺ௿ԹͰ
∫

d2xLCP = Ls

(
f(ΛCPLτ )

Lτ
+ E0

)

= Ns

(
f(Λ̂CPNτ )

Nτ
+

π

3Nτ

)
(15)

ԹͰߴ
∫

d2xLCP = −(N − 1)Ns

(
π

3Nτ

)
(16)

ͱͳΔɻ

3 Թʹ͓͚ΔΤωϧΪʔͷLτґଘੑߴ

ຊڀݚͰ͸্֨ࢠͷ̎࣍ݩ CPN−1໛ܕΛ͑ߟΔɻU(1)ήʔδ৔ λµΛิॿ
৔ͱͯ͠ಋೖ͢Δ͜ͱͰɺ࡞༻Λ

S = −Nβ
∑

n,µ

(
z̄n+µ · znλn,µ + z̄n · zn+µλ̄n,µ − 2

)
(17)

4

と書く。ここで、zはN 成分の複素スカラー場で
zn · z̄n = 1 (2)

を満たす。(·は zをN 成分のベクトルとしてみたときの内積を表す。) λを
導入することで、モンテカルロ計算において、localに場の updateをできる
という利点がある。
サイト nにある場 zn,λn,µに対する forceは、

∂S

∂z̄n
≡ Fz,n =

∑

µ

(zn−µλn−µ,µ + zn+µλ̄n,µ) (3)

∂S

∂λ̄n,µ
≡ Fλ,n,µ = z̄nzn+µ (4)

となる。
すると、場 zn, z̄nに関する局所作用を

sn,z = −Nβ[ℜ[z̄n · Fz,n] + ℜ[zn · F̄z,n] (5)

ゲージ場 λn,µ, λ̄n,µに関する局所作用を
sn,λ = −Nβ[ℜ[λ̄n,µFλ,n,µ] + ℜ[λn,µF̄λ,n,µ]] (6)

とかける [3]。
ここで、real vector φを以下のように導入することで、これらの複素スカ

ラー場、U(1)ゲージ場は、以下のように一つの変数 θの更新でかけるように
なる。

φ2j = ℜ[zn,j], φ2j+1 = ℑ[zn,j], j = 0, · · · , N − 1 (7)

φR
µ = ℜ[λµ], φI

µ = ℑ[λn,µ], (8)

と置き、対応する Forceを Fφとすると、局所作用は
sφ = −Nβφ · Fφ = −Nβ|Fφ| cos θ, (9)

とかけ、各 φベクトルは、θを新しくすることで

φnew = cos θnew
Fφ

|Fφ|
−
(
φold − cos θold

Fφ

|Fφ|

)
sin θnew
sin θold

(10)

= φnew
∥ cos θnew + φnew

⊥ sin θnew (11)

で updateできる。
注意点としては、あるサイト nでの zを更新したら、次に同じ siteの λµ

を更新する [5]。

2

Vector field Φ is introduced:

と書く。ここで、zはN 成分の複素スカラー場で
zn · z̄n = 1 (2)

を満たす。(·は zをN 成分のベクトルとしてみたときの内積を表す。) λを
導入することで、モンテカルロ計算において、localに場の updateをできる
という利点がある。
サイト nにある場 zn, λn,µに対する forceは、

∂S

∂z̄n
≡ Fz,n =

∑

µ

(zn−µλn−µ,µ + zn+µλ̄n,µ) (3)

∂S

∂λ̄n,µ
≡ Fλ,n,µ = z̄nzn+µ (4)

となる。
すると、場 zn, z̄nに関する局所作用を

sn,z = −Nβ[ℜ[z̄n · Fz,n] + ℜ[zn · F̄z,n] (5)

ゲージ場 λn,µ, λ̄n,µに関する局所作用を
sn,λ = −Nβ[ℜ[λ̄n,µFλ,n,µ] + ℜ[λn,µF̄λ,n,µ]] (6)

とかける [3]。
ここで、real vector φを以下のように導入することで、これらの複素スカ

ラー場、U(1)ゲージ場は、以下のように一つの変数 θの更新でかけるように
なる。

φ2j = ℜ[zn,j], φ2j+1 = ℑ[zn,j], j = 0, · · · , N − 1 (7)

φR
µ = ℜ[λµ], φI

µ = ℑ[λn,µ], (8)

と置き、対応する Forceを Fφとすると、局所作用は
sφ = −Nβφ · Fφ = −Nβ|Fφ| cos θ, (9)

とかけ、各 φベクトルは、θを新しくすることで

φnew = cos θnew
Fφ

|Fφ|
−
(
φold − cos θold

Fφ

|Fφ|

)
sin θnew
sin θold

(10)

= φnew
∥ cos θnew + φnew

⊥ sin θnew (11)

で updateできる。
注意点としては、あるサイト nでの zを更新したら、次に同じ siteの λµ

を更新する [5]。

2

updated just by updating θ

cf.) Berg,Luscher(81), Campostrini,et.al.(92), Alles,et.al.(00), Flynn,et.al.(15), Abe,et.al.(18)

Nx = 40-400,   Nτ = 8,12,   β= 0.1-4.0,  N = 3-20,  Nsweep = 200000,400000

・Expectation values of Polyakov loop and its susceptibility

・Thermal entropy                                   

(1)ZN transition(pbc)   (2)ZN continuity(tbc)   (3)Thermal entropy

・Parameters and quantities

s = β(Nτ)2(<Txx>-<Tττ>)



Polyakov-loop of
CPN-1 models on R x S1 

with pbc.
N=3,5,10,20       (Nx,Nt) = (200, 8)        Nsweep = 200,000



Low-β：around the origin 

→ approximate ZN symmetry

Distribution plot of P-loop

High-β ：moves to one of ZN vacua 

　　　→ ZN breaking transition

N=3 N=3

|<P>| ≠ 0 |<P>| ~ 0
Re[P]

Im[P]
Pの分布(5,000 MC STEP) PBC

beta=0.1 beta=0.9

beta=1.1 beta=2.9

Z_3対称 少しずつずれていく

Z_3非対称

2019/2/13

�10

Pの分布(5,000 MC STEP) PBC

beta=0.1 beta=0.9

beta=1.1 beta=2.9

Z_3対称 少しずつずれていく

Z_3非対称

2019/2/13

�10

Note that ZN symmetry is not exact for PBC



VEV of Polyakov loop |<P>|

• |<P>| ~ 0 at low β,  then |<P>| undergoes crossover-like transition
• Peak of Polyakov-loop susceptibility χ gets sharper with N 

Crossover transition for finite N is checked,
which would be 2nd-order phase transition for large N limit
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�h|P |i N=3,5,10,20N=3,5,10,20|<P>|

β



Volume dependence of χ-peak
�h|P |i

it supports crossover transition for finite N (2nd-order in large-N)

CP(N-1), N=10,20の結果

�<|L|>
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Polyakov loopの感受率のbeta依存性

Beta

N=10
N=20 Nt=8に固定 

Ns=200 

Ns=160 

Ns=120 

Ns=80 

Ns=40

N=20の方がピークが鋭くなり相転移が強くなっているようにみえる�45

CP(N-1), N=10,20の結果

�<|L|>
<latexit sha1_base64="STTqjh6FcTPcXU+1hUDPE1uvCTI="></latexit><latexit sha1_base64="STTqjh6FcTPcXU+1hUDPE1uvCTI=">AAACe3ichVHNSsNAEP4a/+tf1YvgRQyKiJSJKIqIiF48ePCvWqilJHFbF9MkJGlBqy/gC3jwpCAi+hZefAEPPoJ4VPCi4DQNghZ1lt2d/Xa+mW9nDdeSfkD0GFMaGpuaW1rb4u0dnV3diZ7eLd8peaZImY7leGlD94UlbZEKZGCJtOsJvWhYYtvYX6reb5eF50vH3gwOXJEt6gVb5qWpBwxZuISJPUjkUMEcjrDCcx7HuYRKSQptsN7RIkdFZKtO4go72IXD6UooQsBGwL4FHT6PDDQQXMayXEiHx54M7wWOEWduiaMER+iM7vNa4FMmQm0+V3P6IdvkKhZPj5mDGKYHuqYXuqcbeqL3X3NVwhxVLQe8GzWucHPdJ/0bb/+yirwH3Kgv1p+aA+QxE2qVrN0NkeorzBq/fHj6sjG7PlwZoQt6Zv3n9Eh3/AK7/Gperon1M8T5A7Sf7a53tiaSGiW1tUl1YTH6ilYMYAij3O9pLGAZq0hx3SNc4Aa3sQ9FVcaU8VqoEos4ffhmytQngjWPWA==</latexit><latexit sha1_base64="STTqjh6FcTPcXU+1hUDPE1uvCTI="></latexit><latexit sha1_base64="r2ihVce0V5ySyo/EuLqIcBuiGDg="></latexit>

Polyakov loopの感受率のbeta依存性

Beta

N=10
N=20 Nt=8に固定 

Ns=200 

Ns=160 

Ns=120 

Ns=80 

Ns=40

N=20の方がピークが鋭くなり相転移が強くなっているようにみえる�45

N=10,20のピークの最大値の体積スケーリング

�<|L|>,max
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V(Ns)

N=20 

N=10

Log-log plotにして指数をみる

N=20: p~0.061 

N=10:p~0.086

1次相転移ではないことは間違いなさそう �46

• Volume dependence of the peak is not linear → not 1st-order
• χ for N=20 is larger than that for N=10 → 2nd-order in large N? 

�h|P |i,max

β

   p=1 : 1st,     0<p<1: 2nd or crossover�max = c+ aV p

Fukugita,et.al.(90)



Polyakov loop of
CPN-1 models on R x S1 

with ZN tbc.

N=3,5,10,20       (Nx,Nt) = (200, 8), (400,12)         Nsweep=200000, 400000



Low-β：around the origin → 

ZN symmetry at the action level

Distribution plot of P-loop

Intermediate-β：Transition between 

N vacua → quantum ZN symmetry

N=3, β=0.1 N=3, β=1.6

|<P>| ~ 0

Im[P]

|<P>| ~ 0

Re[P]



Low-β：around the origin → 

ZN symmetry at the action level

Distribution plot of P-loop
N=3, β=0.1 N=3, β=1.8Im[P]

|<P>| ≠ 0

High-β：One of ZN vacua selected  

             → SSB of ZN symmetry….?

Re[P]

|<P>| ~ 0



Low-β：around the origin → 

ZN symmetry at the action level

Distribution plot of P-loop

High-β：One of ZN vacua selected  

             → SSB of ZN symmetry….?

N=3, β=0.1 N=3, β=2.0

|<P>| ≠ 0

Im[P]

Re[P]

|<P>| ~ 0



Distribution plot of P-loop
N=3, β=0.1 N=3, β=2.4

|<P>| ≠ 0

Im[P]

Re[P]

Low-β：around the origin → 

ZN symmetry at the action level

High-β：One of ZN vacua selected  

             → SSB of ZN symmetry….?

|<P>| ~ 0



This peculiar P-loop could imply something special (ZN stability?).
We still need larger volume or more statistics to judge continuity.

VEV of Polyakov loop  |<P>|
N=5N=3|<P>| |<P>|

β β

• Low β → |<P>|= 0 :  distribution around origin
• Mid β  → |<P>| highly fluctuates : distribution forms polygons
• High β → suddenly gets |<P>|≠ 0 : but more stat. can form polygon　



N=5N=3

β=1.4 β=1.6

β=1.8 β=2.0

β=1.4 β=1.6

β=1.8 β=2.0

VEV of Polyakov loop  |<P>|

• Low β → |<P>|= 0 :  distribution around origin
• Mid β  → |<P>| highly fluctuates : distribution forms polygons
• High β → suddenly gets |<P>|≠ 0 : but more stat. can form polygon　

This peculiar P-loop could imply something special (ZN stability?).
We still need larger volume or more statistics to judge continuity.



This peculiar P-loop could imply something special (ZN stability?).
We still need larger volume or more statistics to judge continuity.

VEV of Polyakov loop  |<P>|
N=10|<P>|

β

N=20|<P>|

β

• Low β → |<P>|= 0 :  distribution around origin
• Mid β  → |<P>| highly fluctuates : distribution forms polygons
• High β → suddenly gets |<P>|≠ 0 : but more stat. can form polygon　



VEV of Polyakov loop  |<P>|
N=20N=10

β=1.2 β=1.4

β=1.5 β=1.7

β=1.0 β=1.3

β=1.4 β=1.6

• Low β → |<P>|= 0 :  distribution around origin
• Mid β  → |<P>| highly fluctuates : distribution forms polygons
• High β → suddenly gets |<P>|≠ 0 : but more stat. can form polygon　

This peculiar P-loop could imply something special (ZN stability?).
We still need larger volume or more statistics to judge continuity.



Polygon-shaped distributions of Polyakov loop (|<P>|~0) 
appear more often with more statistics

It may indicate ZN stability (continuity)….

Furthermore,



Distribution plot of P-loop (very high β, large volume)

N=3, β=4.0, (400×12) Hysteresis of arg[P]

|<P>| ~ small Any of ZN vacua is not selected

Independent configurations for very high β (β=4.0) with large 
volume include a quantum ZN symmetric case as below !

Re[P]

Im[P]

it seems we need larger volume or more statistics for ZN continuity….

Very high-β：quantum ZN symmetric case found with certain probability



Fractional instantons

1/3 fractional antiintanton + 
1/3 fractional instanton 
                =  bion

3 × 1/3 fractional intantons 
           =  instanton

x

arg[P]

implies fractional instantons cause transition between classical vacua at high 
β, which lead to quantum ZN symmetry and could yield adiabatic continuity

Pick up two of configurations and look into the x-dependence of arg[P]
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x
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β, which lead to quantum ZN symmetry and could yield adiabatic continuity

arg[P]

Pick up two of configurations and look into the x-dependence of arg[P]



Fractional instantons

1/3 fractional antiintanton + 
1/3 fractional instanton 
                =  bion

3 × 1/3 fractional intantons 
           =  instanton

x

implies fractional instantons cause transition between classical vacua at high 
β, which lead to quantum ZN symmetry and could yield adiabatic continuity

＊we are on the way of calculating topological charge density directly.

arg[P]

Pick up two of configurations and look into the x-dependence of arg[P]



Fractional instantons



Summary
・Lattice simulation of CPN-1 model on R x S1

・ZN crossover transition is confirmed for pbc

・Thermal entropy agrees with the prediction for pbc

・Characteristic β dependence of P-loop for tbc, 

    which inspires more study on adiabatic continuity

・A pivotal role of fractional instantons is implied for tbc


