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Introduction

2d supersymmetric (topological) gauge theory can be well formulated 
on generic graphs (discretized Riemann surface or polyhedra) 
 ⇒ a generalization of the supersymmetric lattice gauge theory (the so-
called Sugino model)

S2

Simplicial 
complexes 
(graph) with the 
same Euler 
characteristics

!χΓ = 2!χh = 2



Introduction

Question:
How much can we discuss symmetries on the graph in parallel with the 
continuous field theory?
✤ Supersymmetries

✤ Global symmetries

✤ Index theorem, heat kernel, zero modes

✤ BRST symmetries, etc.

We would like to consider properties (symmetries) of the discretized 
gauge theory on the 2d graph



SUSY on curved Riemann surface

4d N=1 (4 supercharges)
!AM, D; ψα, ψ̄ ·α

dimensional reduction on !Σh × T2

!Aμ, Φ = A3 + iA4, Φ̄ = A3 − iA4, D; ψα, ψ̄ ·α

turn on a background R-gauge field

Preserves 2 supercharges at least
∇R

μ ξ ≡ ∇μξ + i𝒜R
μξ = 0

∇R
μ ξ̄ ≡ ∇μξ̄ − i𝒜R

μξ̄ = 0
Killing eq.

Riemann surface 
with genus h



SUSY on curved Riemann surface

original 
fields helicity R-charge redefined fields

0 0 0-form

±1 0 1-form

0 0 2-form

±1/2 ±1/2 1-form

±1/2 ∓1/2
0-form 
2-form

Aμ A = Aμdxμ

Φ, Φ̄ Φ, Φ̄

D Y ≡ Dω − F

as the same as the topological twist

ψ1, ψ̄ ·1

ψ2, ψ̄ ·2

λ = λμdxμ

η

χ =
1
2

χμνdxμ ∧ dxν

volume form

field strength



Isometries and supercharges
✤ 4 supercharges are decomposed into:  

        !         on generic curved Riemann surface  
    0-form  1-form      2-form

✤ 2 supercharges are nilpotent up to gauge transformation:  
        !

✤ If there exist isometries, associated supercharges are preserved:  
        !  
e.g. (squashed) sphere ⇒ 1 isometry ⇒ 3 supercharges 
       torus ⇒ 2 isometries ⇒ 4 supercharges (2d N=(2,2) SUSY) 

Q, Qμ, Qμν (Q̃)

Q2 = Q̃2 = δg

Q2
I = δg + ℒI

Lie derivative



SUSY transformation

✤ We consider Abelian gauge theory only in this talk

✤ We can define SUSY transformations for one of the supercharges Q

!
!
!
!

Qϕ = 0,
Qϕ̄ = 2η, Qη = 0
QA = λ, Qλ = − dϕ
QY = 0, Qχ = Y

✤ The action can be written in the Q-exact form

!S = −
1

2g2
Q∫ [dϕ̄ ∧ *λ + χ ∧ * (Y − 2F)]

Note that !Q2 = δϕ



SUSY action
✤ Bosonic part of the SUSY action:  

!  

　⇒ !

✤ Fermionic part of the SUSY action:  

!  

where  

!

Sb =
1

2g2 ∫ [dϕ̄ ∧ *dϕ − Y ∧ * (Y − 2F)]
1

2g2 ∫ [dϕ̄ ∧ *dϕ + F ∧ *F]

Sf =
1

2g2 ∫ ΨT ∧ *i /DΨ ≡
1

2g2
(Ψ, i /DΨ)

Ψ = (
η
λ
χ), i /D =

0 −d† 0
d 0 d†

0 −d 0
, d† ≡ − * d * adjoint exterior derivative

(co-differential)



Another supercharge

✤ If we exchange a role between 0-forms ( ! ) and 1-forms ( ! ), we can find 
another SUSY transformation !

η χ
Q̃

!
!
!
!

Q̃(ϕω) = 0,
Q̃(ϕ̄ω) = 2χ, Q̃χ = 0
Q̃A = * λ, Qλ = − d†(ϕω)
Q̃Y = 0, Q̃η = − * Y

✤ The same ! -exact action also can be written in the ! -exact formQ Q̃

!S =
1

2g2
Q̃∫ [dϕ̄ ∧ λ + η(Y − 2F)]

Again !Q̃2 = δϕ



!  vs !Q Q̃

✤ The action is invariant under !  and !  (both !  and !  exact) since the 
action can be written simply by  

!  

and 
!

✤ Thus 2 supercharges !  and !  are preserved on the Riemann surface 
!

Q Q̃ Q Q̃

S =
1

4g2
[Q, Q̃]∫ [ϕ̄F + ηχ]

{Q, Q̃} = 0

Q Q̃
Σh



!  currentU(1)A

✤ The action is invariant under the !  rotation  
!

✤ Associated !  current is given by  
        !

✤ !  current has an anomaly  

        !  

In particular, !

U(1)A

ϕ → e2iθAϕ, ϕ̄ → e−2iθAϕ̄, η → e−iθAη, λ → eiθAλ, χ → e−iθAχ

U(1)A

JA = (ϕdϕ̄ − dϕϕ̄ + ηλ + *χ * λ)/g2

U(1)A

d†JA =
1

4π
ℛ

∫ d†JAω = 2 − 2h = χh

scalar curvature on !Σh

Euler characteristic of !Σh



!  currentU(1)V

✤ We call another global symmetry !  
        !  
where  

        !

✤ Associated !  current is given by  
        !

✤ !  current associates with supercurrents !  and !  
        !  
So we find that !

U(1)V
δVΨ = θVγVΨ

γV = (
0 0 − *
0 − * 0
ω 0 0 )
U(1)V

JV = (*χλ − η * λ)/g2

U(1)V JQ JQ̃
QJV = JQ̃, Q̃JV = − JQ

d†JV = 0 ⇒ d†JQ = d†JQ̃ = 0

! , ! , ! , etc.η ↔ * χ λ ↔ * λ Q ↔ Q̃



Graph

✤ A (connected and directed) graph !  
consists of vertices !  and edges !

✤ We also consider faces ! , which are 
surrounded by closed edges

✤ A dual graph !  is defined by 
exchanging !  and !  (also !  and ! )  

Γ
V E

F

Γ*
V F E E*

!v1

!v2

!v3

!v4

!v5

!v6

!v7

!f2

!f1

!f3

!f4 !f5

!e1 !e2

!e3 !e4
!e5

!e6 !e7

!e8

!e9

!e10
!e11

graph !Γ



Graph

✤ A (connected and directed) graph !  
consists of vertices !  and edges !

✤ We also consider faces ! , which are 
surrounded by closed edges

✤ A dual graph !  is defined by 
exchanging !  and !  (also !  and ! )  

Γ
V E

F

Γ*
V F E E*

dual graph !Γ*

!v̄1

!f̄1

!v̄2
!v̄3

!v̄4 !v̄5

!f̄2 !f̄5

!f̄4

!f̄3

!f̄7

!f̄6

!ē1 !ē2

!ē3 !ē4
!ē5

!ē6 !ē7

!ē8

!ē9

!ē10

!ē11



Differential forms and graph

✤ There is a good correspondence between the differential forms (fields) 
on the Riemann surface !  and the objects on the graph !Σh Γ

Differential 
forms

Fields Graph objects Variables

Bosons
0-form Vertex
1-form Edge
2-form Face

Fermions
0-form Vertex
1-form Edge
2-form Face

A
ϕ, ϕ̄

Y
η

λ
χ

Ue ≡ eiAe

ϕv, ϕ̄v

Yf

ηv

Λe ≡ eiλe

χ f



Differential forms and graph
✤ We can define the SUSY on the graph as well as the cont. field theory  
 
 
 
 
 
 
where !  is an incidence matrix on the graph

✤ The action also can be written in the ! -exact form:  

        !  

where !  is a function of the plaquette (face) variable, which goes to  
         !  

in the continuum limit

Le
v

Q

S = −
1

2g2
0

Q [ϕ̄v(LT)v
eλ

e + χf(Yf − 2Ω f )]
Ω f

Ω f ≡ −
i
2 (Uf − Uf†) → F

!
!
!
!

Qϕv = 0,
Qϕ̄v = 2ηv, Qηv = 0
QAe = iλe, Qλe = − Le

vϕv

QYf = 0, Qχ f = Yf

!
!
!
!

Qϕ = 0,
Qϕ̄ = 2η, Qη = 0
QA = λ, Qλ = − dϕ
QY = 0, Qχ = Y

!f

!e1

!e2
!e3

!e4

!Uf = U1U2U3U−1
4



Incidence matrix

✤ Incidence matrix L:  V(Γ) → E(Γ)  (ne×nv matrix)

L(�) =

0

B@

v1 v2 v3

e1 +1 �1 0

e2 0 +1 �1

e3 �1 0 +1

1

CA

v1 v2

v1

v2 v3

e.g.

e
s(e) = v1 t(e) = v2

e1

e2

e3

+

-

+ -

+

-

Known as charge matrix (toric data) for the bi-fundamental matters 
in quiver gauge theory

Le
v =

+1 if s(e) = v
−1 if t(e) = v
0 others



SUSY action on the graph
✤ Bosonic part of the SUSY action:  

      !  

　⇒ !   where !  is the graph Laplacian

✤ Fermionic part of the SUSY action:  

      !  

where  

      !

Sb =
1

2g2
0

[ϕ̄vLTv
eLe

v′ �ϕv′� − Yf(Yf − 2Ω f )]
1

2g2
0

[ϕ̄v(ΔV)v
v′�ϕ

v′� + ΩfΩ f] ΔV ≡ LTL

Sf =
1

2g2
0

ΨTi /DΨ

Ψ =
ηv

λe

χ f
, i /D =

0 −LT 0
L 0 D
0 −DT 0

, (DT) f
e ≡

δΩ f

δAe
∝ (ĽT) f

e

incidence matrix on 
the dual graph !Γ*



Properties of the “Dirac operator”

✤ We can see the correspondence between the (co)differentials and incidence 
matrices 
 
 
 
 

✤ !  is a square root of the graph Laplacians  

        !  

where we have used the orthogonality between !  and ! : 
         !   (corresponds to ! )

/D

/D2 =
LTL 0 0

0 LLT + DDT 0
0 0 DTD

≡
ΔV 0 0
0 ΔE 0
0 0 ΔF

L D
LTD = DTL = 0 d2 = d†2 = 0

!i /D(Γ) =
0 −LT 0
L 0 D
0 −DT 0

!i /D(Σh) =
0 −d† 0
d 0 d†

0 −d 0

!e!ē



SUSY on the dual graph

✤ We can dualize the SUSY on !  to one on the dual graph !  
 
 
 
 
 
 
where we have used the relation ! , ! , !

✤ The dual action is defined as the ! -exact form:  

        !  

where ! , etc., but we find 
         ! , ! , !

Γ Γ*

v̄ = f ē = e f̄ = v

Q̃

S̃ = −
1

2g2
0

Q̃ [λēĽē
f ϕ̄ f + ηv(Yv − 2Ωv)]

Ωv ≡ Mv
f Ω f

S ≠ S̃ {Q, Q̃} ≠ 0 Q̃S ≠ 0

!
!
!
!

Qϕv = 0,
Qϕ̄v = 2ηv, Qηv = 0
QAe = λe, Qλe = − Le

vϕv

QYf = 0, Qχ f = Yf

!
!
!
!

Q̃ϕ f = 0,
Q̃ϕ̄ f = 2χ f , Q̃χ f = 0
Q̃Ae = λe, Q̃λe = − Ľe

f ϕ f

Q̃Yv = 0, Q̃ηv = Yv

Q, QI, Q̃

on the graph



!  violationU(1)V

✤ Unlike on the Riemann surface (Hodge duals), there is no symmetry 
under exchanging the vertices and faces

✤ There preserves only one supercharge !  and !   is violated on the 
graph !

✤ We can show that the !  symmetry does not have a quantum 
anomaly  
        !   where !  is traceless

✤ We expect that the !  is restored in the continuum limit

Q U(1)V

Γ

U(1)V

⟨∂JV⟩ = ⟨ΨTγV /DΨ⟩ γV

U(1)V



!  current and anomalyU(1)A

✤ !  current on the graph is given by  

        !  

where  

        !  

thus 

　 !

U(1)A

∂JA =
1

2g2
0

ΨTiγA /DΨ

γA =
1V 0 0
0 −1E 0
0 0 1F

⟨∂JA⟩ = ⟨ΨTiγA /DΨ⟩/2g2
0

= TrV⊕E⊕FγA

= dim V − dim E + dim F = χΓ

All processes are finite unlike 
continuous field theory



Heat kernel regularization

✤ Let us introduce the following heat kernel  
        !     where  !  
which obeys the heat equation  

        !

✤ Using the eigenvectors of ! , we obtain a trace of the heat kernel  
        !  

✤ We evaluate the !  current by  

        !

h(t)x
y ≡ e−t /D2 x, y ∈ V, E, F

( ∂
∂t

+ /D2) h(t) = 0

/D2

h̃(t) ≡ ∑
n

ΨT
nh(t)Ψn = ∑

n

e−tλ2
n

U(1)A
⟨∂JA⟩ = TrV⊕E⊕FγAe−t /D2 = TrVe−tΔV − TrEe−tΔE + TrFe−tΔF

= ind /D

eigenvalues



Examples: Tetrahedron

✤ Incidence matrix on the tetrahedron is given by  

! ,    !

✤ Laplacians are  

! , ! ,  !  

! , ! , !  
Thus we find !

L =

1 0 0 −1
1 −1 0 0
1 0 −1 0
0 1 −1 0
0 0 1 −1
0 −1 0 1

Ľ =

0 −1 1 0
−1 1 0 0
1 0 −1 0

−1 0 0 1
0 0 −1 1
0 −1 0 1

ΔV =

3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

ΔE =

4 0 0 0 0 0
0 4 0 0 0 0
0 0 4 0 0 0
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 4

ΔF =

3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

Spec ΔV = {4,4,4,0} Spec ΔE = {4,4,4,4,4,4} Spec ΔF = {4,4,4,0}
TrV⊕E⊕F⊕γAe−t /D2

= (3e−4t + 1) − 6e−4t + (3e−4t + 1) = 2

!v1

!v2

!v3 !v4

!e1!e2
!e3

!e4

!e5

!e6



Index theorem on polyhedra

Tetrahedron {4,4,4,0} {4,4,4,4,4,4} {4,4,4,0}

Hexahedron {6,4,4,4,2,2,2,
0}

{6,6,6,4,4,4,4,
4,4,2,2,2} {6,6,4,4,4,0}

3×3 torus {6,6,6,6,3,3,3,
3,0}

{6,6,6,6,6,6,6,
6,3,3,3,3,3,3,3

,3,0,0}

{6,6,6,6,3,3,3,
3,0}

Spec ΔV Spec ΔE Spec ΔF TrV⊕E⊕F γAe−t /D2

(3e−4t + 1)
−6e−4t

+(3e−4t + 1) = 2

(e−6t + 3e−4t + 3e−2t + 1)
−(3e−6t + 6e−4t + 3e−2t)
+(2e−6t + 3e−4t + 1) = 2

(4e−6t + 4e−3t + 1)
−(8e−6t + 8e−3t + 2)
+(4e−6t + 4e−3t + 1) = 0



Heat kernel on the graph

✤ Let us consider a subspace of the heat kernel  
        !     where  ! , ! : edge length

✤ On the continuous 2d space-time, the heat kernel behaves  
        !

✤ On the other hand, the trace of the heat kernel gives  

        !  

✤ We can compare the heat kernel on !  with the eigenvalues of the graph 
Laplacian with !  

        !    where ! : radius

hV(t)v
v′� ≡ e−tΔV /a2 v, v′� ∈ V a

h(x, y; t) =
1

4πt
e−|x−y|2/2t + ⋯

h̃(t) ≡ ∫ dx h(x, x; t) = ∑
n

e−tλ2
n

S2

χΓ = 2

h̃(t) =
R2

t
+ ⋯ ↔ h̃V(t) = TrVe−tΔV /a2 R



Comments on graph spectrum

Graph Laplacian eigenvalues

zero mode

Tetrahedron

Hexahedron Octahedron

IcosahedronDodecahedron

Truncated 
icosahedron (C60)

Truncated 
dodecahedron



Asymptotic behavior of the graph 
heat kernel

✤ The heat 
kernel tends 
to behave 1/t

# of zero modes

!t

!h̃(t)

Trace of the heat kernel



BRST symmetry

✤ We can introduce the ghosts, Nakanishi-Lautrup field and BRST 
transformation by  

        !

✤ The ghost !  is a superpartner of !   
        ! ,   !

✤ We choose the gauge fixing function as  
        !     (Coulomb gauge) 

✤ If we define a combination of the SUSY and BRST symmetry by 
! , the gauge fixing action is written in a ! -exact form 

        !

δBcv = 0, δBc̄v = 2Bv δBBv = 0,
δBAe = − Le

vcv, δBϕ = 0, etc.
c ϕ

Qcv = ϕv Qc̄ = QB = 0

f v = (LT)v
eAe −

1
2

Bv

QB ≡ Q − δB QB

S′� = −
1

2g2
0

QB [ϕ̄v(LT)v
eλ

e + χf(Yf − 2Ω f ) + c̄v f v] = S + SGF+FP

!
nilpotent
Q2

B = 0



Boson/Fermion correspondence

✤ Up to the 1-loop approximation, the gauge fixing action consists of  

    !  

where  

    !

✤ !  and !  have the same determinant  
  ⇒ 1-loop determinants are canceled with each other except for zero 
modes

S′�b ∼
1

2g2
0

[ϕ̄LTLϕ + VT XV]

S′�f =
1

2g2
0

[c̄LTLc + ΨTi /DΨ]

V =
Bv

Ae

Yf
, X =

−1 LT 0
L 0 D
0 DT −1

X /D

Ψ =
ηv

λe

χ f
, i /D =

0 −LT 0
L 0 D
0 −DT 0



Conclusion and Discussion

✤ We found the correspondence between the differential forms and 
objects on the graph, and the (co)differential and (dual) incidence 
matrix on the graph

✤ The zero modes and anomaly are much similar to the continuous field 
theory

Results:

Outlook:
✤ Inclusion of the chiral superfields (a generalization of Hirzebruch–

Riemann–Roch theorem, chiral anomaly)

✤ Extension to higher dimensional manifold

✤ Check by the numerical simulation


