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Introduction

2d supersymmetric (topological) gauge theory can be well formulated
on generic graphs (discretized Riemann surface or polyhedra)

= a generalization of the supersymmetric lattice gauge theory (the so-
called Sugino model)

Simplicial
complexes
(graph) with the
same Euler
characteristics

Xr=2




Introduction

We would like to consider properties (symmetries) of the discretized
gauge theory on the 2d graph

Question:

How much can we discuss symmetries on the graph in parallel with the
continuous field theory?

* Supersymmetries
* Global symmetries
* Index theorem, heat kernel, zero modes

* BRST symmetries, etc.



SUSY on curved Riemann surface

4d N=1 (4 supercharges)

Riemann surface

. =X
Qi Mo with genus h

* dimensional reduction on X, X T>

1 (I) —_— A3 + lA4, q_) —_— A3 o lA4, D, l//a, l/_/a

* turn on a background R-gauge field
ViE=V ELidE=0

Preserves 2 supercharges at least e Killing eq.
VRE=V E— igfE=0




SUSY on curved Riemann surface

original

fields

helicity R-charge redefined fields

strength

as the same as the topological twist



Isometries and supercharges

* 4 supercharges are decomposed into:

0, 4 O (0) on generic curved Riemann surface

O-form 1-form 2-form

* 2 supercharges are nilpotent up to gauge transformation:

Q2=Q2=5g

* If there exist isometries, associated supercharges are preserved:
2. Lie derivative
Or =0+ 4, =

e.g. (squashed) sphere = 1 isometry = 3 supercharges

torus = 2 isometries = 4 supercharges (2d N=(2,2) SUSY)



SUSY transformation

* We consider Abelian gauge theory only in this talk

* We can define SUSY transformations for one of the supercharges Q

Q¢ =0,

Op=2n, On=0

OA=), Ol=—dp

Or=4.  Or=1
Note that 0 = §,

+ The action can be written in the Q-exact form

LR 0 n[dqg/\*/l+)(/\*(Y—2F)]




SUSY action

* Bosonic part of the SUSY action:

Sb:%QZ [dg/?/\*dqb—Y/\*(Y—2F)]
[0 -
L K K
= dp A *dp + F A *F]

+ Fermionic part of the SUSY action:
[ 1
= W = ()
202 22
where

. { o g =d' 0 + _ s 7 adjointexterior derivative
T=1a] W= d 0 4} d'=-*d (co-differential)
£ 0 —-d 0

Sy




Another supercharge

+ If we exchange a role between 0-forms () and 1-forms (y), we can find
another SUSY transformation O

O(¢w) =0,

Qpw) =2y, Oy =0

@A =7 ) 01 = — d'(pw)
O On—— 17/

Again Q° = Oy

+ The same Q-exact action also can be written in the Q-exact form

n

e
Szfngu dp A A +n(Y — 2F)]
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Qvs ¢

+ The action is invariant under Q and O (both O and O exact) since the

action can be written simply by

1 s
S=T22[QaQ]u [¢F+’7)(]

and

{0,0}=0

+ Thus 2 supercharges Q and Q are preserved on the Riemann surface
2h



U(l), current

+ The action is invariant under the U(1), rotation

¢—>€21@A¢, ¢—>€_210A¢, I/]—>€_19A}’], /1—>619A/1, )(_)e—lﬁA)(

+ Associated U(1), current is given by
Jy= (¢pdp — dpp +nd + *y* 1)/ g

+ U(l), current has an anomaly

1 scalar curvature on X
dT JA L 4_ P a—— h
T

In particular, d'J =2 h—r
u Dy

Euler characteristic of 2



U(1)y current

+ We call another global symmetry U(1)y,

oyt = Oyry ¥
where 5
0 0 = e vy e B () () ele
=0 -+ o)
w 0 0

+ Associated U(1l)y current is given by
Jy = (%A —n*A)lg”

+ U(1)y current associates with supercurrents Jpand J
So we find that d'J, = 0= d'J, =d'J5 =0



Graph

+ A (connected and directed) graph I

consists of vertices V and edges E

+ We also consider faces F, which are

surrounded by closed edges

+ A dual graph I'* is defined by
exchanging V and F (also E and E*)
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Graph

+ A (connected and directed) graph I

consists of vertices V and edges E

+ We also consider faces F, which are

surrounded by closed edges

+ A dual graph I'* is defined by
exchanging V and F (also E and E*)

dual graph I'*



Differential forms and graph

* There is a good correspondence between the differential forms (fields)

on the Riemann surface 2, and the objects on the graph I'

Differential Fields

Graph objects  Variables
forms

O-form b, ¢ Vertex b, P
1-form A Edge U = et
2-form Y Eace v/
O-form ’7 Vertex n’
Fermions 1-form A Edge Af = il
2-form X Face ¥




Differential forms and graph

* We can define the SUSY on the graph as well as the cont. field theory

Q¢ =0, Q¢’ =0,

Op=2n On=0 Q¢"=2n", On'=0
@A 0 —— i @A — 1 O — e
D=0 O =7 QY =0, Oy =Y

where L°, is an incidence matrix on the graph

. . € @ ¢
+ The action also can be written in the O-exact form:
1 .
= T\v je fa T ‘ ‘
L ; 0 [gbv(L Y 4 + g ¥ = 2Q )] R
where Q/is a function of the plaquette (face) variable, which goes to €3
sz—é(Uf—Uﬁ)eF &

U

in the continuum limit



Incidence matrix

* Incidence matrix L: V(I') = E(I') (n.xn, matrix)

+1 iks(e) =1

L8 =2 1 ifte)=v
0 others
e.g.
e b U
L D
=] 8 41 1
€3 \——1 0 +1/

Known as charge matrix (toric data) for the bi-fundamental matters
in quiver gauge theory



SUSY action on the graph

* Bosonic part of the SUSY action:

1
Sy == | LLoY - Y —200)]
ZgO

= ¥ [gbv(AV)"v,qb"’ + Qfo ] where A, = L' L is the graph Laplacian
* Fermionic part of the SUSY action:
1
Sf > 2_lPTlD oo incidence matrix on
g() the dual graph I'*
where /
n : —LT 0 0 f

0
0 -
P=lith s 0 a0l D soiadl




Properties of the “Dirac operator”

* We can see the correspondence between the (co)differentials and incidence
matrices

0 d 0 B L 0
eyl 0 » ey — e 0D
B g 0 0 —-p. 0

+ ID is a square root of the graph Laplacians

LTL 0 0 Ay, O 0
-1l o [1'+DppE 0 l=10 Ax O e e
0 0 D'D 6 0 A

where we have used the orthogonality between L and D:
L'D=D'L=0 (corresponds to d> = d™ = 0)



SUSY on the dual graph

+ We can dualize the SUSY on I to one on the dual graph I'*

O¢* =0, O¢’ =0,

0" = 21", On’= 0 Op =2y, Oy =0
QAe = /16, Q/Ie e Lev¢v QAe /le Qﬂe - Lef¢f
@y -0 0/ -7 0 O

where we have used the relation v = f, e = ¢, f =

+ The dual action is defined as the O-exact form:

. 1
T Le 1 f Yy )0 ] \
S 2 0 [/1 7+ m,( ) 0, 0, 0
where QY = MV Qf, etc., but we find

S#S,{Q,Q} +0,0S #0 on the graph



U(1)y violation

+ Unlike on the Riemann surface (Hodge duals), there is no symmetry

under exchanging the vertices and faces

+ There preserves only one supercharge Q and U(1)y, is violated on the

graph I’

+ We can show that the U(1),, symmetry does not have a quantum

anomaly
(oJ,) = (Ply,, DP) where y, is traceless

+ We expect that the U(1)y, is restored in the continuum limit



U(1), current and anomaly

« (1), current on the graph is given by

0Jy = =iy, DY
80
where
1. 0 0
a—10 1. 0
g a0 1,
thus

(0J,) = (Yiy, DWP)/2g>
A A 0

All processes are finite unlike

= ITygrar’a continuous field theory
=dmV-—-dimE+dim F = y



Heat kernel regularization

* Let us introduce the following heat kernel
h(t)x = ¢ where x,yeV.EF

which obeys the heat equation

3+ )
—+ D" ) h() =0
ot

+ Using the eigenvectors of I)°, we obtain a trace of the heat kernel

(1) = Z‘PTh(t)‘P Z 14—

n

— eigenvalues

+ We evaluate the U(1), current by
() Tre e = Tr 6 S aTrolia g Tag i

= 1nd D



Examples: Tetrahedron

* Incidence matrix on the tetrahedron is given by

1 B 09 ) (0 -1 1 0

21 0.0 1 06 0

I 0 1 0 Y 1 0 =1 0
L= L:

B 1 =1 0l =1 0 0 |

B 0 1 - 0.0 1 |1

o 1 0 1 0 -1 0 1]

* Laplacians are

(4. 0.0 0 0 0)
1. ] ) 040000 (a3 1 [ )
s 004000 3 1
A, = A LA
Ll 1. 33 dl o 10 0 04 0.0 el 3
1 3 000040 ] e
0000 0 4

Spec Ay = {4,4,4,0}, Spec Ay = {4,4,4,4,4,4}, Spec Ap = {4,4,4,0}
Thus we find TrV@EEBF@yAe_tDZ =Be ™ +1)—6e™+Be M +1)=2



Index theorem on polyhedra

—tD?

Spec Ay, Spec Ar Spec Ar

Trygrar 7a€

(Be L 1)
Tetrahedron EERERFE) (44,4,4,44) (4,4,4,0) e
+Be ¥ +1)=2

(e:% b 3¢ 3 4l

{6/4/4/4/2/2/2/ {6/6/6/4/4/4/4/ {6,6,4,4,4,0} _(36—6t e 6e—4t i 36—2t)

Hexahedron

0} 44,2,2,2) +(e ™ +3e™ % +1)=2
16,6,6,6,6,6,6, (4e™ +4e™ + 1)
616161 el el S & A Do) ) e et Dol 4 — —
3%3 torus { e 9,05,5,5,555 19,6/6,6,3:4 =8 " 8. 4 D)
310} ,3,010} 3’0} +(4e_6t e iy 1)y —0
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Heat kernel on the graph

Let us consider a subspace of the heat kernel
2
hy(2)’ , = e "Av4"  where v,Vv' € V, a: edge length

On the continuous 2d space-time, the heat kernel behaves

h(x,y;t) = Le—lx—ylz/% q

At

On the other hand, the trace of the heat kernel gives
h(t) = | dxh(x, x;t) = Z e~

We can compare the heat kernel on S* with the eigenvalues of the graph

Laplacian with y = 2
2

- R

<>

n

oo 2
hy(t) = Trye 24" where R: radius



Comments on graph spectrum

50 A

40 1

30 A

20 A

10 A

Graph Laplacian eigenvalues

Tetrahedron

- Tetrahedron

- Hexahedron (cube)

- Octahedron

- Dodecahedron

- lcosahedron

- Truncated icosahedron (C60)
- Truncated dodecahedron

- Spherical harmonics
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Asymptotic behavior of the graph

heat kernel

Trace of the heat kernel

60
50 A

40 A

il(f) 30 1

—— Tetrahedron

—— Hexahedron (cube)

—— Octahedron

—— Dodecahedron

—— lcosahedron

—— Truncated icosahedron (C60)
—— Truncated dodecahedron

—— 2d sphere
N \
10 _
0.00 0.05 0.10 0.15 0.20 0.25

* The heat
kernel tends

to behave 1/t

+«—— # of zero modes

0.30



BRST symmetry

We can introduce the ghosts, Nakanishi-Lautrup field and BRST

transformation b
5BCV — O, BEV — 2BV 5BBV — O,

o4 = 1 ¢ opp= 1 ele
The ghost c is a superpartner of ¢
Oc"'=¢", Oc=0B=1(
We choose the gauge fixing function as

e T\v pe 1 % Q2 =20
J'=€L) A% - EB (Coulomb gauge) B

nilpotent

If we define a combination of the SUSY and BRST symmetry by
Qs = O — 65, the gauge fixing action is written in a Qz-exact form

1 -
§'= = 5208 [FUY A+ 17 =200+ &.f"| =5+ SGErp
0




Boson/Fermion correspondence

* Up to the 1-loop approximation, the gauge fixing action consists of

VIXV]

n 0 - 1% 0
= 1241, ib=|L 0 D
¥ 0O -DPbL 0

+ X and D have the same determinant
= 1-loop determinants are canceled with each other except for zero
modes



Conclusion and Discussion

Results:

* We found the correspondence between the differential forms and
objects on the graph, and the (co)differential and (dual) incidence
matrix on the graph

* The zero modes and anomaly are much similar to the continuous field

theory
Outlook:

* Inclusion of the chiral superfields (a generalization of Hirzebruch-
Riemann—Roch theorem, chiral anomaly)

* Extension to higher dimensional manifold

* Check by the numerical simulation



