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Prehistory : 
Matrix-theory approach to M-theory  



Basic tenets of M-theory conjecture   Hull-Townsend, Witten, .... 1995

achieve a complete unification of strings and D-branes 
   in a compactified 11 dimensional space-time
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1. WHAT IS MATRIX THEORY ?

RECALL THE ‘M-THEORY’ CONJECTURE:

spacetime
dimensions

11

9

Perturbative Theories

Type I Hetero
SO(32)

Hetero
 E8 x E8

Type IIA Type IIB10

M Theory

Circle Circle/Z2

HeteroType IType
IIAB

S duality

T duality

Cirlce Compactification

! Hypothetical theory in 11 spacetime dimensions, which could
hopefully achieve a complete unification of strings and D-branes.

! Fundamental length scale of M theory, in terms of
gs=string coupling, ℓs=string scale:

ℓP = g1/3
s ℓs = 11D Planck scale

fundamental length scales: 
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Although the first term of the Hamiltonian is not positive definite, the momentum Πµ

" is

conserved,

dΠµ

"

dτ
= 0 (217)

and hence we can consistent set, as a constraint for the initial condition,

Πµ

" = 0 or
dXµ

!

dτ
= 0 (218)

assuming that the Xµ

! is a time-like space-time vector,

Xµ

! X ! µ < 0 (219)

Then, the Hamiltonian can be positive definite in this sector with vanishing first term. The

variables Xµ

! behaves as constant external variables or coupling constant for the dynamics

of the matrix variables. Any numerical choice of these coupling constants amounts to

selecting a preferred Lorentz frame.

1.6 Reduction to the light-cone M(atrix) theory

length scales: string scale ℓs

ℓ11 = g1/3
s ℓs, ℓs =

√
α′ (α′)−1 = string tension

R11 = gsℓs : compactification radius along the (spatial) 11th dimension.

11 d limit:

R11 = ℓ3
11/ℓ

2
s = ℓ11g

2/3
s → ∞ with fixed ℓ11 ⇔ ℓs → 0, gs → 0

M-theory = strong coupling limit of (type-IIA) string theory with vanishing string tension.
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underlying physical degrees of freedom: 

M2 branes (         M5-branes)   
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super-membranes
・wrapped along the 11th (circle) direction 

(fundamental) strings in 10 dimensions

・extended within un-compactified 10 dimensions

D2-branes

11D gravitons=10D gravitons + KK modes

strings D0-branes (particles)

The limit of un-compactification 
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corresponds to string theory with infinite string coupling  
and infinite string tension !
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• 10D and 11D limits in the sense of 1+1 dimensional YM theory,

! strong coupling ↔ IR limit (discussed by DVV)

gYM → ∞ ⇒ R11 → 0⇒ 10D limit⇒ [X i ,X j ]→ 0

(R8)N/SN orbifold 2D CFT ∼ GS string in light-cone gauge (N → ∞)

! weak coupling ↔ UV limit
gYM → 0⇒ R11 → ∞ ⇒ 11D limit

In the M-theory limit, we should fix 11D Planck scale

ℓP = g
1/3
s ℓs fixed ⇒ ℓs = g

−1/3
s ℓP → 0 11D

10D

11D

10D

string-gravitons and D0 particles in 10D
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Only tractable quantum formulation of (super) membranes 

 regularization in the light-cone gauge

As is discussed in the beginning of this note, this is equivalently expressed as by intro-

ducing an auxiliary variable

−
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−{Xµ, Xν , Xσ}{Xµ, Xν , Xσ} ⇒ 1

2

(1

e
{Xµ, Xν , Xσ}{Xµ, Xν , Xσ}− e

)
+ · · · (222)

In the light-cone gauge

X+ = ξ0 = τ (223)

the system is described by the Hamiltonian ((a, b, . . .) ∈ (1, 2, . . . , 9)) . . .

H =
1

2P+
(P 2

a +
1

2
{Xa, Xb}2) + · · · , h̄12 = −h̄21 ≡ ∂1X

a∂2X
a (224)

{Xa, Xb} = ∂1X
a∂2X

b − ∂1X
b∂2X

b (225)

which is the Poisson bracket in the space of 2 dimensional spatial parameters of the world

volume. Here and in what follows the ellipsis indicates the terms involving fermionic

variables.

Pa =

√
det h̄

△ , △ = −h00 + urh̄
rsus (226)

ur ≡ h0r = ∂rX
− + ∂0X

a∂rX
a + · · · (227)

△ = −h00 + urr̄sus (228)

P+ =

√
det h̄

△ (229)
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Goldstone-Hoppe,1982, ....

Combining with the fact that this coincides with the non-
relativistic effective theory of D0-particles in 10D  
(type IIA) string theory, it is tempting to interpret this  
theory as the light-cone gauge description of M-theory. 

Banks, Fischler, Shenker, Susskind, 1996M(atrix) theory conjecture

U(N) gauge symmetric (super) SO(9) quantum mechanics
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❖ Simple but quite non-trivial, well-defined and manifestly      
unitary quantum mechanics ;

❖ Plenty of evidence, though not yet completely conclusive,                
with respect to correspondence with 11d supergravity; 

For a comprehensive review on this subject up until the early 2000s, 
see W. Taylor, hep-th/0101126 (published in Reviews of Modern Physics)

mostly based on perturbative studies (gravity=loop effect);
        graviton (D0) scattering, 
        classical solutions for various branes and fluctuations, etc 

However, non-covariant in the sense of 11d Lorentz symmetry



For myself, 
a (relatively) more recent and suggestive piece of evidence:
                    consistency with “holographic” predictions 
                    for non-perturbative 2-point correlators;

J
H
E
P
1
2
(
2
0
1
1
)
0
2
0

from eq. (2.2) without any anomalous dimension. (See ref. [13, 14] for a complete dictio-

nary between the supergravity modes and the Matrix theory currents.) Note that each of

X̃i = Xi/q1/7 contributes 1 − 3
7 = 4

7 to the scaling dimension, and hence 2
5 to the index ν

in accord with (2.12). It is remarkable that the scaling properties can be explained with

such simple assignment of dimensions with respect to the GCS. We emphasize that from

a purely gauge-theoretical point of view, the appearance of the factor q1/7 is genuinely a

dynamical effect, which is difficult to understand without invoking the dual gravity theory.

As has been mentioned below eq. (2.2), the generalized scaling transformation used

above is essentially equivalent to the boost transformation along the 11th direction, where

the longitudinal momentum P+ = N/R is scaled by treating 1/R as a variable with fixed

N . In the M-theory interpretation of the gauge theory, on the other hand, we fix R or gs

instead and increase N to realize the IMF. It is therefore interesting to examine the above

general form from this point of view. We consider the transformation N → ρN together

with t → ρ t. Then the two-point functions (2.16) scale as

〈

O(t)O(t′)
〉

∼ 1

g 2
s ℓ

8
s

(gsNℓ 7
s )1+

2
7 ν

|t − t′|2ν+1
→ ρ−

12ν
7

〈

O(t)O(t′)
〉

, (2.22)

from which we obtain the weight dM = −6ν/7 for each operator under the M-theory boost.

In terms of the 11D light-like coordinates, the exponent ν is expressed as

ν =
7

5
(1 − n+ + n−) +

2

5
ℓ , (2.23)

where n+ (n−) is the number of upper + (−) light-cone indices in the operator. Thus the

weight dM is given by

dM =

(

1 +
1

5

)

(n+ − n− − 1) −
(

1

7
+

1

5

)

ℓ . (2.24)

This should be compared with the kinematical weight for the boost d(kin)
M = (n+ − n− −

1) − 1
7ℓ, where the term −1 in the parenthesis comes from the fact that the currents are

supposed to be integrated over the x− direction, and the factor of 1/7 in front of ℓ comes

from our normalization of transverse fields X̃i = Xi/q1/7. The weight dM found from the

gauge-gravity correspondence is indeed determined solely from the 11-dimensional index

structure of the operator, but we observe interesting anomalous factors. It is therefore

important to clarify whether the behavior (2.16) continues to be valid in the M-theory

regime corresponding to the far IR region |t − t′| ∝ N . Our Monte Carlo data presented

in section 3.2 seem to suggest that it does. Then, it would be interesting to clarify the

meaning of the anomalous behavior indicating that the transverse size is compressed by

the factor of ρ1/5 under the boost. See ref. [20] for further considerations on this issue.

2.4 Predictions for stringy excited modes

In this subsection we extend the calculation of correlation functions to operators that

correspond to stringy excited modes on the gravity side. We note first that this is a highly

nontrivial issue since one has to somehow generalize the GKPW prescription, which is based
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from eq. (2.2) without any anomalous dimension. (See ref. [13, 14] for a complete dictio-

nary between the supergravity modes and the Matrix theory currents.) Note that each of

X̃i = Xi/q1/7 contributes 1 − 3
7 = 4

7 to the scaling dimension, and hence 2
5 to the index ν

in accord with (2.12). It is remarkable that the scaling properties can be explained with

such simple assignment of dimensions with respect to the GCS. We emphasize that from

a purely gauge-theoretical point of view, the appearance of the factor q1/7 is genuinely a

dynamical effect, which is difficult to understand without invoking the dual gravity theory.

As has been mentioned below eq. (2.2), the generalized scaling transformation used

above is essentially equivalent to the boost transformation along the 11th direction, where

the longitudinal momentum P+ = N/R is scaled by treating 1/R as a variable with fixed

N . In the M-theory interpretation of the gauge theory, on the other hand, we fix R or gs

instead and increase N to realize the IMF. It is therefore interesting to examine the above

general form from this point of view. We consider the transformation N → ρN together

with t → ρ t. Then the two-point functions (2.16) scale as

〈

O(t)O(t′)
〉

∼ 1

g 2
s ℓ

8
s

(gsNℓ 7
s )1+

2
7 ν

|t − t′|2ν+1
→ ρ−

12ν
7

〈

O(t)O(t′)
〉

, (2.22)

from which we obtain the weight dM = −6ν/7 for each operator under the M-theory boost.

In terms of the 11D light-like coordinates, the exponent ν is expressed as

ν =
7

5
(1 − n+ + n−) +

2

5
ℓ , (2.23)

where n+ (n−) is the number of upper + (−) light-cone indices in the operator. Thus the

weight dM is given by

dM =

(

1 +
1

5

)

(n+ − n− − 1) −
(

1

7
+

1

5

)

ℓ . (2.24)

This should be compared with the kinematical weight for the boost d(kin)
M = (n+ − n− −

1) − 1
7ℓ, where the term −1 in the parenthesis comes from the fact that the currents are

supposed to be integrated over the x− direction, and the factor of 1/7 in front of ℓ comes

from our normalization of transverse fields X̃i = Xi/q1/7. The weight dM found from the

gauge-gravity correspondence is indeed determined solely from the 11-dimensional index

structure of the operator, but we observe interesting anomalous factors. It is therefore

important to clarify whether the behavior (2.16) continues to be valid in the M-theory

regime corresponding to the far IR region |t − t′| ∝ N . Our Monte Carlo data presented

in section 3.2 seem to suggest that it does. Then, it would be interesting to clarify the

meaning of the anomalous behavior indicating that the transverse size is compressed by

the factor of ρ1/5 under the boost. See ref. [20] for further considerations on this issue.
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❖ These exponents are intrinsically non-perturbative: they are 
independent of the coupling constant, but differ from the canonical 
dimensions of the operators;

　　　seems valid even for finite N !?

❖ The power-law behavior of “supergravity operators” reflects the gapless 
nature of this system. 

Y. Sekino and T.Y., Nucl. Phys. B570, 174(2000)[hep-th/990029] 
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Figure 1. The log-log plot of the correlator
〈

J+
ℓ (t)J+

ℓ (0)
〉

with ℓ = 1, 3 for N = 2 (Left) and

with ℓ = 1, 2, 3, 4 for N = 3 (Right). The cutoff parameters are chosen as β = 4 and Λ = 16. The
straight lines represent the power-law behavior predicted by the gauge-gravity correspondence.

at small p as one can see from eqs. (2.14) and (2.15). Here, f(p) and g(p) (g(0) ̸= 0)

are analytic functions invariant under p ↔ −p, and hence they can be written as f(p) =

f0 + f2 p2 + · · · and g(p) = g0 + g2 p2 + · · · , where g0 ̸= 0. The coefficients are not fixed

since we have focused on the most relevant term in the IR limit neglecting the overall

normalization factor. Our main task is to extract the power ν by fitting the Monte Carlo

data for various correlation functions to the form (3.12) and to compare it with the values

predicted by the gauge-gravity correspondence.

The existence of the undetermined analytic terms in (3.12) makes the extraction of

ν more difficult, in particular, for large ν. This problem can be avoided if one can make

the inverse Fourier transformation (3.10) numerically. The analytic terms are transformed

into local terms, and hence do not affect the power-law behavior (2.16) of correlation

functions in the real space, from which one can extract the exponent ν. However, there

are cases in which the inverse Fourier transformation is not possible numerically. This can

happen either due to the IR behavior or due to the UV behavior. Correlation functions

for operators with ν < −1
2 (e.g., T++

2 ) behave as ∼ |p|2ν at small p, and hence the inverse

Fourier transform is divergent at p ∼ 0. The correlation function for operators (e.g., T+
ℓ )

including a derivative does not fall off in the momentum space at large p, which makes

the inverse Fourier transformation numerically unstable. Even in these cases, it turns out

that the results we obtain directly in the momentum space are in good agreement with the

prediction from the gauge-gravity correspondence.

In what follows we present our results for J+
ℓ , T++

ℓ and T+
ℓ in order. In the N = 2

case the correlation function becomes identically zero for J+
ℓ (ℓ : even), T++

ℓ (ℓ : odd) and

T+
ℓ (ℓ : even) due to properties of the Pauli matrices, and hence we omit these cases.

Let us start with the correlation functions of operators J+
ℓ , for which the inverse

Fourier transform can be calculated numerically. If we naively make the inverse transform,

however, the correlation function in the real space shows oscillating behavior with the

period δt ∼ β/(2πΛ). This is well-known as the Gibbs phenomenon, and it is an artifact

– 22 –

J
H
E
P
1
2
(
2
0
1
1
)
0
2
0

3.2 Results for supergravity modes

In this subsection we present our results for the two-point correlation functions of opera-

tors (2.18)–(2.20) corresponding to supergravity modes.

Let us first define the operators we study by simulating the model (3.1). The operators

J+ij
ℓ,i1,··· ,iℓ

(ℓ ≥ 1) are defined by

J+ij
ℓ,i1,··· ,iℓ

≡ 1

N
Str
(

FijXi1 · · ·Xiℓ

)

, (3.7)

where Fij ≡ −i [Xi,Xj ] and Str represents the symmetrized trace treating Fij as a single

unit. Restricting ourselves to ℓ ≤ 7, we may assume that all the indices i, j, i1, · · · , iℓ are

different from each other so that the traceless condition for (2.18) is trivially satisfied. The

operators T++
ℓ,i1,··· ,iℓ

(ℓ ≥ 2) are defined by

T++
ℓ,i1,··· ,iℓ

≡ 1

N
Str
(

Xi1 · · ·Xiℓ

)

. (3.8)

Restricting ourselves to ℓ ≤ 9, we may assume that all the indices i, j, i1, · · · , iℓ are

different from each other so that the traceless condition for (2.20) is trivially satisfied. The

operator T+i
ℓ,i1,··· ,iℓ

are defined by

T+i
ℓ,i1,··· ,iℓ

≡ 1

N
Str
(

(DtXi)Xi1 · · ·Xiℓ

)

, (3.9)

where Str represents the symmetrized trace treating (DtXi) as a single unit. Restricting

ourselves to ℓ ≤ 8, we may assume that all the indices i, i1, · · · , iℓ are different from

each other so that the traceless condition for (2.19) is trivially satisfied. Due to the SO(9)

symmetry, the result for the two-point correlation function for each type of operators

should not depend on the assignment of the indices. Therefore we average over all possible

assignment to increase the statistics in actual calculation.

Since the basic dynamical degrees of freedom in our Monte Carlo calculations are

Fourier modes (3.3), the correlation functions that are directly accessible are those in the

momentum space
〈

Õ(p) Õ(−p)
〉

, which are related to those in the real space by the inverse

Fourier transformation
〈

O(t)O(0)
〉

=

∫

dp

2π

〈

Õ(p) Õ(−p)
〉

eipt . (3.10)

Using the Fourier modes Õn defined similarly to (3.3), we can rewrite it as

〈

Õ(p) Õ(−p)
〉

= β
〈

Õn Õ−n

〉

, where p =
2πn

β
. (3.11)

Note that the factor of β on the right-hand side is needed to make the correlation function

finite in the large-β limit.

The gauge-gravity correspondence predicts the two-point function in the Fourier space

to behave as
〈

Õ(p) Õ(−p)
〉

∼ f(p) + g(p) |p|2ν (3.12)
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represents gravitational interactions. The moments are constructed from the basic opera-

tors by inserting the Xi fields inside the trace and symmetrizing their ordering. Following

the 11D light-cone notation in ref. [17–19], let us define the operators6

J+
ℓ =

1

gsℓs
Cij;i1...iℓ Tr

(

FijX̃i1 · · · X̃iℓ

)

, (2.18)

T+
ℓ =

1

gsℓs
Ci;i1...iℓ Tr

(

(DtXi)X̃i1 · · · X̃iℓ

)

, (2.19)

T++
ℓ =

1

gsℓs
Ci1...iℓ Tr

(

X̃i1 · · · X̃iℓ

)

, (2.20)

where Fij = −i [Xi,Xj ]/ℓ 2
s , which we will identify with the supergravity modes v2, a2, s3

in table 1, respectively. We have defined the dimensionless matrix variable X̃i = Xi/q1/7,

which naturally corresponds to the dimensionless combination r7/q appearing in the D0-

background in the bulk theory. We have also assumed the same global prefactor 1/gsℓs as

in the D0-brane action (2.1) so that the engineering dimensions of these operators are now

1. It turns out that this normalization is necessary for matching the bulk modes and the

gauge-theory operators with respect to the GCS.

In order for the operators to have definite SO(9) angular momenta, the constant co-

efficients C’s must satisfy the following conditions. The coefficient Ci1...iℓ in (2.20) should

be totally symmetric, and it should also be traceless under contraction of any two indices.

The coefficient Ci;i1...iℓ in (2.19) should be totally symmetric, and it should also be traceless

with respect to the indices i1 . . . iℓ , and anti-symmetric under the exchange of i and any

of i1 . . . iℓ. The coefficient Cij;i1...iℓ in (2.18) is totally symmetric, and it should also be

traceless with respect to the indices i1 . . . iℓ, and anti-symmetric in i, j as well as for the

exchange of i or j with any of i1 . . . iℓ.

The guiding principle in relating the gauge-theory operators with the supergravity

modes is that the generalized conformal dimensions should match between the bulk fields

and the gauge-theory operators. Let us define the generalized conformal dimension ∆ of a

gauge-theory operator O(t) such as (2.18)–(2.20) by the scaling property O(t) → O′(t′) =

ρ∆ O(t) under t → t′ = ρ−1 t, gs → g′s = ρ3 gs. Having in mind the calculation from the

gravity side based on the effective action (2.11), we assume that the two-point functions

of these operators obey the power-law behavior, and that the only length scale allowed is

q1/7 apart from the gravitational constant g 2
s ℓ

8
s appearing as the overall coefficient. Then

the GCS along with the usual dimensional analysis fixes the behavior of the correlation

function with the above normalization to have the general form
〈

O(t)O(0)
〉

∼ 1

g 2
s ℓ 8

s
q(∆+6)/5 |t|−(7∆+12)/5 . (2.21)

Comparing this with eq. (2.16), we get ∆ = −1 + 10
7 ν. We can see from table 1

and (2.18)–(2.20) that v2, a2, s3 correspond to J+
ℓ , T+

ℓ , T++
ℓ , respectively, since the gener-

alized conformal dimensions ∆ coincide if we assign the canonical value 1 to Xi as suggested

6The operators given in ref. [17–19] are of the form J+(ℓ)
ij;i1...iℓ

= 1
gsℓs

Tr (FijXi1 · · ·Xiℓ
). Here we have

taken special combinations J+
ℓ , which transform irreducibly under SO(9). The same remark applies to the

operators T+
ℓ and T++

ℓ as well.
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Using Monte Carlo simulations (despite of a possible defect: sign problem ?), 
  M. Hanada, J. Nishimura, Y.S. and T.Y., arXiv:0911.1623 (P.R.L), arXiv:1108.5135 (JHEP)

suggestive “experimental” evidence



 Toward “covariantization” of DLCQ Matrix Theory                                   



M(atrix)-theory proposal in the DLCQ scheme

D0s play the role of basic constituents  
(“partons”) for all dynamical objects of M-theory

BFSS conjecture (IMF)

The effective theory of N D-particles is re-interpreted as  
an exact theory in a particular light-front  
frame with a compactified light-like direction                                                                          
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(9, 1) dimensions. Note that if we separate out the center-of-mass momen-
tum P i

◦ and the traceless part of the matrices

P i
◦ ≡ TrP i,

we can write

H =
1

2P 10
◦

(P 2
◦i + Ĥ), P 10

◦ = NR−1
11

Ĥ = NTr
(
P̂

2

i −
1
2
[Xi, Xj ]

)
+ · · · (9)

where and in what follows we denote the traceless part of the matrices by
putting ˆ symbol: P̂ i = P i − 1

N P◦i. Ĥ involves only the traceless part of
the matrix variables.

Now what should be the interpretation of the above coincidence? Sup-
pose that we consider an ordinary relativistic system of N interacting par-
ticles in flat spacetime. If we extract the center-of-mass momentum Pµ

◦ ,
the system would have invariably a mass-shell constraint of the form

Pµ
◦ P◦µ + M2

eff = 0, (10)

where M2
eff is the effective squared mass which describes internal (Lorentz-

invariant) dynamics of the whole system. Using the light-like components,
this can be expressed as

−P−
◦ ≡ P 0

◦ − P 10
◦ =

√
P 2
◦i + (P 10

◦ )2 + M2
eff − P 10

◦ → P 2
◦i + M2

eff

2P 10
◦

(11)

in the limit of large P10, which corresponds to the so-called infinite mo-
mentum frame (IMF). Alternatively, we can use an exact relation using
light-like components, irrespectively of P10 being large or small,

−P−
◦ =

P 2
◦i + M2

eff

P+
◦

, (12)

which of course reduces to (11) in the limit P 10
◦ → ∞. In the case of (12),

we can assume further that the compactification is made directly along the
light-like direction X− with radius R corresponding to the quantization
condition

P+
◦ = 2N/R,

by which (12) coincides with (9) if we identify Ĥ with M2
eff . This special

compactification scheme along X− is known as the discrete light-cone quan-
tization (DLCQ) in field theories. But we are now adopting this scheme to
relativistic system of N particles in configuration-space formulation, instead

by identifying
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eff . This special

compactification scheme along X− is known as the discrete light-cone quan-
tization (DLCQ) in field theories. But we are now adopting this scheme to
relativistic system of N particles in configuration-space formulation, instead

December 3, 2016 16:22 WSPC Proceedings - 9in x 6in tohokulecture2016 page 4

4

which will be called “Nambu-bracket” (or Nambu-Poisson bracket). The
standard form of the world-volume action is obtained by eliminating the
auxiliary field e.

Unfortunately, this is a notoriously difficult system to deal with, es-
pecially with respect to quantization. Only tractable way which allow
us a reasonably concrete treatment so far is to adopt the light-front
gauge X+ ≡ X10 + X0 = τ , breaking 11-dimensional Lorentz covari-
ance.1 After a further (still partial) gauge-fixing of the residual (time-
dependent) re-parametrizations of spatial coordinates (σ1,σ2) by demand-
ing that the induced metric of the world-volume takes an orthogonal form
ds2 = g00dτ2 + grsdσrdσs (r, s ∈ (1, 2)) with grs = ∂rXi∂sXi and also
that light-like momentum density is a constant P+ = P 10 + P 0 with the
normalization

∫
d2σ = 1, we are left with a constraint

{Pi, X
i} + · · · ≈ 0,

where

{A, B} ≡ ∂1A∂2B − ∂2A∂1B

for arbitrary pair of functions A, B, and the effective Hamiltonian, in the
unit ℓ11 = 1 for notational brevity :

H =
∫

d2σ
1

P+
(P 2

i +
1
2
{Xi, Xj}2) + · · · .

where the indices i, j, . . . , of the target-space coordinates Xi run over only
nine transverse directions (1, 2, . . . , 9). The constraint demands that the
system is invariant under infinitesimal (time-independent) area-preserving
diffeomorphism of spatial coordinates which still remains as residual gauge
transformations after all of the above gauge-fixing conditions :

δF Xi = (∂1F∂2 − ∂2F∂1)Xi = {F,Xi} (3)

with F = F (σ) is an arbitrary function of the spatial world-volume coordi-
nates.

Of course, as a 3-dimensional field theory, this is still a very nontrivial
system without standard kinetic-potential terms, such as (∂1Xi)2+(∂2Xi)2,
of second order, but being instead equipped with (non-renormalizable)
quartic interaction terms with four derivatives. A useful suggestion for
controlling this system was made by Goldstone and Hoppe2 in the early
80s (and developed further in ref.3 later). Namely, we can regularize this
system by replacing the fields Xi(ξ) by finite N×N hermitian matrices Xi

ab
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(9, 1) dimensions. Note that if we separate out the center-of-mass momen-
tum P i

◦ and the traceless part of the matrices

P i
◦ ≡ TrP i,

we can write

H =
1

2P 10
◦

(P 2
◦i + Ĥ), P 10

◦ = NR−1
11 ,

Ĥ = NTr
(
P̂

2

i −
1

2
[Xi,Xj ]

)
+ · · · , (9)

where and in what follows we denote the traceless part of the matrices by
putting ˆ symbol: P̂ i = P i − 1

N P◦i. Correspondingly, the center of mass
coordinate as the canonical conjugate to Pµ

◦ is X◦ i = TrXi/N (Xi =
X◦ i + X̂i). Ĥ involves only the traceless part of the matrix variables.

Now what should be the interpretation of the above coincidence? Sup-
pose that we consider an ordinary relativistic system of N interacting par-
ticles in flat spacetime. If we extract the center-of-mass momentum Pµ

◦ ,
the system would have invariably a mass-shell constraint of the form

Pµ
◦ P◦µ +M2

eff = 0, (10)

where M2
eff is the effective squared mass which describes internal (Lorentz-

invariant) dynamics of the whole system. Using the light-like components,
this can be expressed as

−P−
◦ ≡ P 0

◦ − P 10
◦ =

√
P 2
◦i + (P 10

◦ )2 +M2
eff − P 10

◦ → P 2
◦i +M2

eff

2P 10
◦

(11)

in the limit of large P10, which corresponds to the so-called infinite mo-
mentum frame (IMF). Alternatively, we can use an exact relation using
light-like components, irrespectively of P10 being large or small,

−P−
◦ =

P 2
◦i +M2

eff

P+
◦

, (12)

which of course reduces to (11) in the limit P 10
◦ → ∞. In the case of (12),

we can assume further that the compactification is made directly along the
light-like direction X− with radius R corresponding to the quantization
condition

P+
◦ = 2N/R,

by which (12) coincides with (9) if we identify Ĥ with M2
eff . This special

compactification scheme along X− is known as the discrete light-cone quan-
tization (DLCQ) in field theories. But we are now adopting this scheme
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tics after two decades of various studies.
A very bold hypothesis made in7 8 9, following the so-called BFSS con-

jecture10 made prior to it, is that the above SU(N) gauge theory is already
an exact theory of 11-dimensional M-theory in the special DLCQ quantiza-
tion scheme with finite N . Of course, in order to exhibit full 11-dimensional
content of this theory under this assumption, we should be able to treat
continuous values of P+

◦ in any fixed Lorentz frame. Thus definitely we
have to take the limit N → ∞ and R → ∞ in the end. However, it is
quite remarkable that even a finite-N theory may have a definite and cer-
tain exact meaning related somehow to exact non-perturbative formulation
of M-theory. It seems a pity that in spite of intensive studies made from
the late 90s to the early 2000s, progress has practically stopped in the last
decade. In this lecture, I would like to revisit and pursue the conjecture of
Matrix theory in its strongest form as a working hypothesis.

For the validity of this hypothesis, there is a presumption that Ĥ is
physically equivalent with the Lorentz-invariant mass-square M2

eff with fi-
nite N (≥ 2). This must be true for arbitrary Lorentz transformations,
which are not restricted to boosts along the compactified (10th) direction.
Under general Lorentz transformation, the values of P±

◦ are mixed with
transverse components P i

◦ of momenta. Therefore they must be continu-
ously varying even with finitely fixed N . Here it is important to recall again
that within the framework of the DLCQ scheme, the radius R and hence
P+
◦ are in fact regarded as continuously varying physical variables, since by

boost transformations x+ = x10 + x0 → x′+ = x′10 + x′0 = e−ρx+, x− =
x10 − x0 → x′− = x′10 − x′0 = eρx′− along the 10-th spatial direction we
have transformations

P±
◦ → P ′±

◦ = e∓ρP±
◦

or R′ = eρR with arbitrary value of ρ (see Fig. 1).
Now the final goal of this lecture is to demonstrate how it is indeed

possible to formulate a fully Lorentz-covariant Matrix theory such that
Ĥ is equivalent to a Lorentz invariant mass-square M2

eff representing the
internal dynamics of the system. This will be achieved by realizing a higher
gauge symmetry which extends the usual SU(N) gauge symmetry, (7) and
(8), such that after imposing appropriate light-like gauge conditions for the
higher-gauge degrees of freedom, a manifestly Lorentz covariant formulation
which we are going to propose here reduces to the light-front Matrix theory
in the physical space of allowed states.
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In spite of compactification,  
these are continuously 
changing variables

compactification radius

of momentum along the 11th circle. D2-branes are super-membranes lying entirely un-
compactified 10 dimensional space-times, and D4-branes are wrapped M5-branes which
are 5-dimensionally extended objects, being dual to M2-branes in the sense of electromag-
netic duality of Dirac with respect to RR gauge fields, and so on.

In spite of various circumstantial evidence for this remarkable conjecture being accu-
mulated during two decades, only known and perhaps practically workable example is the
so-called BFSS M(atrix) theory [1]. This proposal was originated from the coincidence
of effective theories for two entirely differenct objects, namely, D-particles and supermem-
branes. In the limit of small ℓs, the effective low-energy theory [2] for many-body dynamics
of D-particles is supersymmetric SU(N) Yang-Mills quantum mechanics which is obtained
from the maximally supersymmetric super Yang-Mills theory by dimensional reduction of
the base (9,1) space-time to (0,1) world line, in which 9 spatial components of gauge fields
turn into matrix coordinates as collective variables representing motion (diagonal matrix
elements) and interaction (off-diagonal matrix elements) of D-particles in terms of short
open strings. Essentially the same super Yang-Mills quantum mechanics also appears [3] as
a possible regularization of a single supermembrane formulated in the light-front quantiza-
tion, approximating to a supermembrane in an appropriate limit of large N . In the latter
case, the functional space of membrane coordinates defined on two-dimensional spatial pa-
rameter space of the membrane world-volume is replaced by the ring of Hermitian N × N

matrices. The crux of the proposal was to realize that, by uniting these two seemingly
different situations as effective theories, the matrix regularization may hopefully provide
not only a regularization of a single membrane, but more importantly describe also “par-
tons” for supermembranes and in principle all other excitations of M-theory in a more
fundamental manner.

Suppose we consider the situation where all of constituent partons have a unit 10-th
momentum p10 = 1/R11 of the same sign (namely, no anti-D-paricles) along the compacti-
fied circle, the total 10-th momentum of a system consisting of N partons is P10 = N/R11 =
Np10. In the limit of large N , it defines an infinite momentum frame P10 → ∞ along the
compactifed circle. Then the coincidence between the effective non-relativistic Yang-Mills
quantum mechanics of D-branes and the light-front regularization of supermembrane is not
at all unreasonable. Remember the case of a relativistic particle with mass-shell condition
PµPµ + m2 = 0,

−P− ≡ P 0 − P 10 =
√

(P i)2 + m2 + (P 10)2 − P 10 → (P i)2 + m2

2P 10
(1.1)

with the indices i = 1, 2, . . . , 9 running only over transverse directions. By making identi-
fication P 10 = N/R11 for the compactified 10-th direction, we expect that this form of P 0

precisely corresponds to the center-of-mass energy of an N D-particle system, assuming
that m2 is the effective relativistically invariant squared mass of the system. We can also
adopt an alternative viewpoint, namely the so-called DLCQ (discrete light-cone quantiza-
tion) interpretation, with respect to the compactification. Instead of 10-th spatial direction,
we can assume [4] that a light-like direction x− ≡ x10 − x0 is compactified into a circle of
radius R with periodicity x− ∼ x− + 2πR. Then the light-like momentum P+ ≡ P 10 + P 0
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1. Introduction

From the viewpoint of exploring non-perturbative formulations of string theory, the conjec-
ture of 11 dimensional M-theory occupies a special pivotal position in providing a candidate
for the strong-coupling limit of the type IIA (and E8 ×E8 Heterotic) string theory. Let us
first recall the basic tenets of M-theory conjecture: The background space-time is (10,1)
space-times instead of (9,1) space-times of string theory. The 10-th spatial dimension is
compactified, , x10 ∼ x10 + 2πR11, around a circle of radius R11 = gsℓs, with gs and ℓs

being the string coupling of type IIA superstrings and fundamental string-length constant,
respectively. The gravitational scale ℓ11 in 11 dimensions is given by ℓ11 = g1/3

s ℓs, so that
the theory with gravitational interactions in infinitely (R11 → ∞) extended 11 dimensional
space-times corresponds to a peculiar limit characterized by gs → ∞ and ℓ2

s = ℓ3
11/R11 → 0.

In particular, the gravitational interactions at long distance scales much larger than ℓ11

should be described by (the classical theory) of 11 dimensional supergravity. Dynamical
degrees of freedom corresponding to strings are expected to be (super) membranes (or
M2-branes), and super-membranes wrapped once around the compactified circle are ex-
pected to behave as fundamental strings in the remaining 10 dimensional space-time in the
limit gs → 0 with finite ℓs. Various D-brane (and other) excitations of string theory also
find their roles naturally. For instance, D0-branes, namely D-particles, are special Kaluza-
Klein excitations of 11 dimensional gravitons with the single quantized unit p10 = 1/R11
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with finite ℓs. Various D-brane (and other) excitations of string theory also find their roles
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dimensional space-times, and D4-branes are wrapped M5-branes which are 5-dimensionally
extended objects, being dual to M2-branes in the sense of electromagnetic duality of Dirac
with respect to RR gauge fields, and so on.

In spite of various circumstantial evidence for this remarkable conjecture being accu-
mulated during two decades, only known and perhaps practically workable example is the
so-called BFSS M(atrix) theory [1]. This proposal was originated from the coincidence
of effective theories for two entirely differenct objects, namely, D-particles and supermem-
branes. In the limit of small ℓs, the effective low-energy theory [2] for many-body dynamics
of D-particles is supersymmetric SU(N) Yang-Mills quantum mechanics which is obtained
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are 5-dimensionally extended objects, being dual to M2-branes in the sense of electromag-
netic duality of Dirac with respect to RR gauge fields, and so on.

In spite of various circumstantial evidence for this remarkable conjecture being accu-
mulated during two decades, only known and perhaps practically workable example is the
so-called BFSS M(atrix) theory [1]. This proposal was originated from the coincidence
of effective theories for two entirely differenct objects, namely, D-particles and supermem-
branes. In the limit of small ℓs, the effective low-energy theory [2] for many-body dynamics
of D-particles is supersymmetric SU(N) Yang-Mills quantum mechanics which is obtained
from the maximally supersymmetric super Yang-Mills theory by dimensional reduction of
the base (9,1) space-time to (0,1) world line, in which 9 spatial components of gauge fields
turn into matrix coordinates as collective variables representing motion (diagonal matrix
elements) and interaction (off-diagonal matrix elements) of D-particles in terms of short
open strings. Essentially the same super Yang-Mills quantum mechanics also appears [3] as
a possible regularization of a single supermembrane formulated in the light-front quantiza-
tion, approximating to a supermembrane in an appropriate limit of large N . In the latter
case, the functional space of membrane coordinates defined on two-dimensional spatial pa-
rameter space of the membrane world-volume is replaced by the ring of Hermitian N × N

matrices. The crux of the proposal was to realize that, by uniting these two seemingly
different situations as effective theories, the matrix regularization may hopefully provide
not only a regularization of a single membrane, but more importantly describe also “par-
tons” for supermembranes and in principle all other excitations of M-theory in a more
fundamental manner.

Suppose we consider the situation where all of constituent partons have a unit 10-th
momentum p10 = 1/R11 of the same sign (namely, no anti-D-paricles) along the compacti-
fied circle, the total 10-th momentum of a system consisting of N partons is P10 = N/R11 =
Np10. In the limit of large N , it defines an infinite momentum frame P10 → ∞ along the
compactifed circle. Then the coincidence between the effective non-relativistic Yang-Mills
quantum mechanics of D-branes and the light-front regularization of supermembrane is not
at all unreasonable. Remember the case of a relativistic particle with mass-shell condition
PµPµ + m2 = 0,

−P− ≡ P 0 − P 10 =
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(P i)2 + m2 + (P 10)2 − P 10 → (P i)2 + m2

2P 10
(1.1)

with the indices i = 1, 2, . . . , 9 running only over transverse directions. By making identi-
fication P 10 = N/R11 for the compactified 10-th direction, we expect that this form of P 0

precisely corresponds to the center-of-mass energy of an N D-particle system, assuming
that m2 is the effective relativistically invariant squared mass of the system. We can also
adopt an alternative viewpoint, namely the so-called DLCQ (discrete light-cone quantiza-
tion) interpretation, with respect to the compactification. Instead of 10-th spatial direction,
we can assume [4] that a light-like direction x− ≡ x10 − x0 is compactified into a circle of
radius R with periodicity x− ∼ x− + 2πR. Then the light-like momentum P+ ≡ P 10 + P 0
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With respect to the δℓ-gauge symmetry, we can choose a gauge B◦ = 0. Then,

P±
◦ = N

dX±
◦

ds
, (3.28)
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mass light-front time as
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◦ =

P+
◦

N
s. (3.29)
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P−
◦ = −

M2
lf

P+
◦
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into the original action. Then, neglecting a total derivative, we obtain
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Tr

(
P̂i

DX̂i

Ds
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+

1
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◦

dX+
◦

ds
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=
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⇒
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]
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∫
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Dx+

DX̂i

Dx+
+

R2

2ℓ6
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[Xi, Xj ][Xi, Xj ]
)
, (3.32)

where in the second line we shifted from our first-order form to the second-order formalism
by integrating out the transverse momenta P̂i, and in the third line, we have rescaled the
time coordinate by s = 2Nx+/P+

◦ (X+
◦ = 2x+) with the constant light-front momentum

P+
◦ discretized with the DLCQ compactication,

P+
◦ =

2N

R
. (3.33)

The gauge field A is also rescaled, A → P+
◦

2N A, ant the covariant derivative is now without
B̂-gauge field since Xi

M = 0 as

DX̂i

Dx+
=

dX̂i

dx+
+ i[A, Xi]. (3.34)

It is to be noted that, if we set R = R11 = gsℓs, this form (3.32) is identical with the
low-energy effective action for D-particles in the weak-coupling limit gs → 0, giving an
infinite momentum frame with fixed N from a viewpoint of 11 dimensions as discussed in
section 1.

Let us also briefly consider the case of spatial compactification. We use the same frame
for the two-dimensional plane spanned by Pµ

◦ and Xµ
M, but we foliate it in terms of the

ordinary time coordinate X0
◦ and choose the time-like gauge

X̂0 = 0, (3.35)
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Then, this must be true in arbitrary Lorentz frame, and hence,  
there should exist a Lorentz-covariant formulation of Matrix  
theory, such that we obtain       after appropriate gauge-fixing  
condition is imposed.  
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tics after two decades of various studies.
A very bold hypothesis made in7 8 9, following the so-called BFSS con-

jecture10 made prior to it, is that the above SU(N) gauge theory is already
an exact theory of 11-dimensional M-theory in the special DLCQ quantiza-
tion scheme with finite N . Of course, in order to exhibit full 11-dimensional
content of this theory under this assumption, we should be able to treat
continuous values of P+

◦ in any fixed Lorentz frame. Thus definitely we
have to take the limit N → ∞ and R → ∞ in the end. However, it is
quite remarkable that even a finite-N theory may have a definite and cer-
tain exact meaning related somehow to exact non-perturbative formulation
of M-theory. It seems a pity that in spite of intensive studies made from
the late 90s to the early 2000s, progress has practically stopped in the last
decade. In this lecture, I would like to revisit and pursue the conjecture of
Matrix theory in its strongest form as a working hypothesis.

For the validity of this hypothesis, there is a presumption that Ĥ is
physically equivalent with the Lorentz-invariant mass-square M2

eff with fi-
nite N (≥ 2). This must be true for arbitrary Lorentz transformations,
which are not restricted to boosts along the compactified (10th) direction.
Under general Lorentz transformation, the values of P±

◦ are mixed with
transverse components P i

◦ of momenta. Therefore they must be continu-
ously varying even with finitely fixed N . Here it is important to recall again
that within the framework of the DLCQ scheme, the radius R and hence
P+
◦ are in fact regarded as continuously varying physical variables, since by

boost transformations x+ = x10 + x0 → x′+ = x′10 + x′0 = e−ρx+, x− =
x10 − x0 → x′− = x′10 − x′0 = eρx′− along the 10-th spatial direction we
have transformations

P±
◦ → P ′±

◦ = e∓ρP±
◦

or R′ = eρR with arbitrary value of ρ (see Fig. 1).
Now the final goal of this lecture is to demonstrate how it is indeed

possible to formulate a fully Lorentz-covariant Matrix theory such that
Ĥ is equivalent to a Lorentz invariant mass-square M2

eff representing the
internal dynamics of the system. This will be achieved by realizing a higher
gauge symmetry which extends the usual SU(N) gauge symmetry, (7) and
(8), such that after imposing appropriate light-like gauge conditions for the
higher-gauge degrees of freedom, a manifestly Lorentz covariant formulation
which we are going to propose here reduces to the light-front Matrix theory
in the physical space of allowed states.

All of 11 dimensions should be treated on an equal 
footing, using 11 matrices in a new framework 
equipped with some higher gauge symmetries.  

remained unsolved for 20 years! 

Presumption for this hypothesis:

is physically equivalent with the Lorentz-invariant  
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even for finite and fixed N !



 Higher gauge symmetry from Nambu bracket                            



Nambu bracket :  
      a possible clue toward higher gauge symmetry ? 

In the light-front gauge, this reduces to 2D  
area preserving diffeo.
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which will be called “Nambu-bracket” (or Nambu-Poisson bracket). The
standard form of the world-volume action is obtained by eliminating the
auxiliary field e.

Unfortunately, this is a notoriously difficult system to deal with, es-
pecially with respect to quantization. Only tractable way which allow
us a reasonably concrete treatment so far is to adopt the light-front
gauge X+ ≡ X10 + X0 = τ , breaking 11-dimensional Lorentz covari-
ance.1 After a further (still partial) gauge-fixing of the residual (time-
dependent) re-parametrizations of spatial coordinates (σ1,σ2) by demand-
ing that the induced metric of the world-volume takes an orthogonal form
ds2 = g00dτ2 + grsdσrdσs (r, s ∈ (1, 2)) with grs = ∂rXi∂sXi and also
that light-like momentum density is a constant P+ = P 10 + P 0 with the
normalization

∫
d2σ = 1, we are left with a constraint

{Pi, X
i} + · · · ≈ 0,

where

{A, B} ≡ ∂1A∂2B − ∂2A∂1B

for arbitrary pair of functions A, B, and the effective Hamiltonian, in the
unit ℓ11 = 1 for notational brevity :

H =
∫

d2σ
1

P+
(P 2

i +
1
2
{Xi, Xj}2) + · · · .

where the indices i, j, . . . , of the target-space coordinates Xi run over only
nine transverse directions (1, 2, . . . , 9). The constraint demands that the
system is invariant under infinitesimal (time-independent) area-preserving
diffeomorphism of spatial coordinates which still remains as residual gauge
transformations after all of the above gauge-fixing conditions :

δF Xi = (∂1F∂2 − ∂2F∂1)Xi = {F,Xi} (3)

with F = F (σ) is an arbitrary function of the spatial world-volume coordi-
nates.

Of course, as a 3-dimensional field theory, this is still a very nontrivial
system without standard kinetic-potential terms, such as (∂1Xi)2+(∂2Xi)2,
of second order, but being instead equipped with (non-renormalizable)
quartic interaction terms with four derivatives. A useful suggestion for
controlling this system was made by Goldstone and Hoppe2 in the early
80s (and developed further in ref.3 later). Namely, we can regularize this
system by replacing the fields Xi(ξ) by finite N×N hermitian matrices Xi

ab
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where the matrix indices a, b, . . . now run from 1 to N . Then, the above
Hamiltonian is replaced by

H =
1

P+
Tr

(
P 2

i −
1
2
[Xi, Xj ]2

)
+ · · · , (4)

where and in what follows we use slanted boldface symbols Xi, P i (hence,
(Xi)ab ≡ Xi

ab) for matrices when the matrix indices (a, b, . . .) are su-
pressed. P i’s are of course canonical-momentum matrices corresponding
to the canonical-coordinate matrices Xi’s. The constraint corresponding
to area-preserving diffeomorphism is now replaced by

[P i, X
i] + · · · ≈ 0, (5)

which generates infinitesimal unitary (SU(N)) transformations of matrix
variables:

δF Xi = i[F ,Xi], δF P i = i[F , P i]

where F is an arbitrary (time-independent) hermitian matrix.
It should be clear that the matrix regularization is based on a formal

but natural analogy between classical brackets { , } and commutator i[ , ].a

The basic idea here is that given a finite world-volume with fixed topology
we can alway use some appropriate Fourier-like representation for the fields
Xi(σ), Pi(σ) and take the resulting discretized Fourier components of them
as dynamical variables. If we have an appropriate way of truncating the
infinite number of such Fourier components into a finite set of components
by keeping the remnant of the area-preserving diffeormorphism group as a
symmetry group of this finite set, it would provide a desirble regularized
version of the original system. It is not unreasonable to expect that, for
sufficiently large N , the above system would be capable of approximating
arbitrary kinds of fixed topology of supermembrane in some classical limit
and, in quantum theory, of describing the dynamics of supermembranes
and other physical objects. Now with a finite number of degrees of freedom,
the system is completely well defined and therefore amenable to any non-
perturbative studies including computer simulations. Matrix models of
this kind would play, at the very least, the role of the same sort that
lattice gauge theories are playing in non-perturbative studies of gauge field
theories. The importance of such tractable system in this sense should not

aSuch an analogy had previously been suggested by Nambu4 in string theory, in connec-
tion with the so-called Schild action which can actually be regarded as the string version
of the action (1) in the gauge e = 1.

Nambu bracket naturally appears  
in the classical theory of membrane

in a similar way as the Poisson bracket is replaced by the commutator in appropriate

operator or matrix algebras. The motivation for this direction is to construct a covariant

formulation of M(atrix) theory which has so far been only known in the light-cone frame.

The light-cone M(atrix) theory which is formally nothing but the maximally N = 8

super-symmetric Yang-Mills field theory in one (time) dimension, with nine independent

(massless) matter fields and one gauge field (and their fermionic super-partners). All

of these fields transform as adjoint representation of the gauge fields. The matter fields

are interpreted as the spatial transverse degrees of freedom of the partons for gravitons

in 11 dimensional space-time. The R symmetry of the theory corresponds to SO(8)

spatial rotation symmetry as the subgroup of full 11 dimensional Lorentz symmetry, after

gauge fixing to the light-cone gauge of some unknown fully covariant underlying theory.

This means that we have to implement a higher gauge symmetry than the usual gauge

symmetry of the field variables, in addition to introducing extra matter fields in order to

represent 11 dimensional coordinates.

A possible idea for regularizing the membrane world volume with manifest 11D Lorentz

symmetry would be to start from the following form of the action obtained after intro-

ducing an auxiliary field

S = − 1

ℓ311

∫
d3ξ

√

−det
(∂Xµ

∂ξa

∂Xµ

∂ξb

)
→ Se =

1

ℓ311

∫
d3ξ

[
1

e
{Xµ, Xν , Xσ}2N − e

]

(24)

with e being the auxiliary field, the elimination of which recover the original volume form.

Then the 3-bracket { , , } may be replaced by some appropriate quantized version [ , , ]

as

Sq =
1

2e

〈
[Xα, Xβ, Xγ]2

〉
− e (25)

where
〈 〉

is the trace operation for the operator algebra associated with this quantization.

This is an analogue of the so-called type IIB (or IKKT) matrix model. Interpretation

matrix indices in the latter of model as a discretization of the two-dimensional world

sheet of strings, it is natural to try to construct an algebra of objects with three indices,

cubic matrix. This is what we have tried in the note in 1997. Unfortunately, however,

it is extremely difficult to implement the requirement that it reduces to the light-cone

matrix theory after an appropriate gauge fixing. The main difficulty is that, with this
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supposing that the Matrix theory with finite N already gives an exact theory with special

light-like compactification, it is not unreasonable to believe the existence of covariant ver-

sion of the finite N super Yang-Mills mechanics. This is particularly so, if we recall that

the above relation between the discretized light-like momentum and the size of matrices

still allows continuously varying P+ with an arbitrary (real and positive) parameter R

corresponding to boost transformations. Since N is invariant under boost by definition in

the DLCQ interpretation, it seems natural to imagine a generalization of super Yang-Mills

mechanics with full covariance allowing general Lorentz transformations for fixed finite N

as a conserved quantum number, not restricted only to boost transformation along the

compactified circle, with all of the 10+1 directions of eleven dimensional Minkowski space-

time being treated equally as matrices or some extensions of matrices. Otherwise, it seems

difficult to justify the DLCQ interpretation. If such a covariant theory exists as in the case

of the ordinary particle mechanics, the DLCQ matrix theory would be obtained as an exact

theory from a covariantized Matrix theory with a Lorentz-invariant effective mass square.

Although we have to take the limit of large N to elevate it to a full fledged formulation of

M-theory, a consistent covariant formulation with finite N could be an intermediate step

toward our ultimate objective.

With this motivation in mind, we studied in ref. [9] the quantization (or more precisely

discretization) of the Nambu bracket [10]. The Nambu (-Poisson) bracket naturally appears

in covariant treatments of classical membranes. For instance, the bosonic action of a

membrane can be expressed in the form

Amem = − 1

ℓ311

∫
d3ξ

(1
e
{Xµ, Xν , Xσ}N{Xµ, Xν , Xσ}N − e

)
, (1.3)

{Xµ, Xν , Xσ}N ≡
∑

a,b,c

ϵabc∂aX
µ∂bX

ν∂cX
σ, (1.4)

giving the Dirac-Nambu-Goto form when the auxiliary variable e is eliminated. Note that

ξa (a, b, c ∈ (1, 2, 0)) parametrize the 3 dimensional world volume of a single membrane,

and space-time indices µ, ν, . . . run over 11 directions of the target space-time. This is

analogous to the treatments of strings where Poisson bracket plays a similar role [11].

In ref. [9] we proposed two possibilities of quantization: one was to use the ordinary

square matrices and their commutators, and the other was more radically to introduce

new objects, cubic matrices with three indices. A natural idea seemed to regularize the

above action (1.3) directly by replacing the NP bracket by a finitely discretized version

and the integral over the world volume by an appropriate “Trace” operation in the algebra

of quantized coordinates corresponding to classical coordinates Xµ(ξ). The usual light-

front action should appear as a result of an appropriate gauge fixing of a higher gauge

seen much progress since then. One thing among more recent works to be mentioned seems that we now

have some suggestive results on non-perturbative properties using numerical simulations. For instance, we

have reported results [7] about the correlation functions of super Yang-Mills quantum mechanics, which are

consistent with the predictions [8] obtained from a “holographic” approach on the relation between 10D

reduced 11D supergravity and super Yang-Mills quantum mechanics.
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Lorentz invariant in 11 dimensional sense, giving the invariant effective mass square. It
seems reasonable also in the former spatial compactification scheme to suppose this, if both
would give results which are equivalent to each other in the large N limit. Motivated by
this problem, we studied in ref. [8] the quantization (or more precisely discretization) of the
Nambu bracket [9]. Indeed, the Nambu (-Poisson) bracket naturally appears in covariant
treatments of classical membranes. For instance, the bosonic action of a membrane can be
expressed in the form

Amem = − 1
ℓ3
11

∫
d3ξ
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{Xµ, Xν , Xσ}N{Xµ, Xν , Xσ}N − e

)
, (1.3)

{Xµ, Xν , Xσ}N ≡
∑

a,b,c

∂aX
µ∂bX

ν∂cX
σ, (1.4)

giving the Dirac-Nambu-Goto form when the auxiliary variable e is eliminated. Note that
ξa (a = 1, 2, 0) parametrize the 3 dimensional world volume of a membrane, and space-time
indices µ, ν, . . . run over 11 directions of the target space-time. This is analogous to the
treatments of strings where Poisson bracket plays a similar role [10].

In ref. [8] we proposed two possibilities of quantization, one of which was to use the
ordinary square matrices and their commutators, and the other was more radically to
introduce new objects, cubic matrices, with 3 indices. A natural idea was to regularize
the above action (1.3) directly by replacing the NP bracket by a discretized version and
the integral over the world volume by an appropriate “Trace” operation in the algebra of
quantized coordinates corresponding to classical coordinates Xµ(ξ). The usual light-front
action should appear as a result of an appropriate gauge fixing of a higher gauge sym-
metry which generalizes its continuous counter part, the area-preserving diffeomorphism
transformations formulated a la Nambu’s mechanics2

δXµ = {F,G,Xµ}N, (1.5)

with (F (ξ), G(ξ)) being two independent local gauge parameter-functions. However, at
that time, we could not accomplish our program. One of the stumbling blocks was our
tacit demand that the light-front time coordinate should also emerge automatically in the
process of gauge fixing.

In the present work, we reconsider the program of covariantization of M(atrix) the-
ory.3 With regards to the difficulty of the emergence of time parameter, we reset our
goal at a lower level. Namely, we introduce from beginning a single invariant (proper)
time parameter τ together with an “ein-bein” auxiliary variable e(τ), which transforms
as dτe(τ) = dτ ′e′(τ ′) under an arbitrary re-parametrization τ → τ ′ and generates the
mass-shell condition for the center-of-mass variables with effective mass square operator.

2We use Nambu’s transformations solely as a convenient notational tool to motivate higher gauge sym-

metry. Therefore, our canonical formalism developed in the next section follows the standard one and has

nothing to do with Nambu’s original intention of extending canonical structure itself.
3For examples of other attempts of applying Nambu brackets towards covariant formulation of Matrix

theory, see e.g. [11] and references therein.
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Our 1999 proposals of finitely discretized Nambu brackets : 

(i) using square matrices, augmented by additional variables

(ii) using cubic matrices with 3 indices
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Notice also that if we consider the triple commutator of the form

[G,A,B]

it follows from the property of skew-symmetry that this bracket is invariant under
A ⇧ A + G and B ⇧ B + G. In other words, [G,G,B] = [G,A,G] = 0 precisely
because of the property of skew-symmetry.

4. Cubic matrices and the Nambu bracket

In this section we want to address the following question: Is there a many-index

matrix representation of the three-dimensional quantum Nambu bracket? For ex-
ample, the three-dimensional classical Nambu bracket is naturally realized in terms
of functions of three variables. Then it is natural to ask: is it possible to realize

the three-dimensional quantum Nambu bracket in terms of three-index objects Aijk
(cubic matrices)? It turns out that the answer to this question is positive. In this

section we give some explicit examples of the three-dimensional quantum Nambu
bracket written in terms of three-index objects or cubic matrices.

Let us introduce the following generalization of the traces

�A⇥ ⇤
�

pm

Apmp , �AB⇥ ⇤
�

pqm

ApmqBqmp , �ABC⇥ ⇤
�

pqrm

ApmqBqmrCrmp ,

(4.1)

which satisfy �AB⇥ = �BA⇥ and �ABC⇥ = �BCA⇥ = �CAB⇥. Let us furthermore
define a triple-product

(ABC)ijk ⇤
�

p

Aijp�B⇥Cpjk =
�

pqm

AijpBqmqCpjk . (4.2)

Given this triple-product we define the following skew-symmetric quantum Nambu

bracket

[A,B,C] ⇤ (ABC) + (BCA) + (CAB)⌅ (CBA)⌅ (ACB)⌅ (BAC) . (4.3)

The middle index j of Aijk can be treated as an internal index for the matrix re-
alization of the three-dimensional quantum Nambu bracket we considered in the

previous section. Therefore we expect that the F.I. should be satisfied. This in-
deed turns out to be the case. Note also that �(ABC)⇥ = �B⇥�AC⇥ ⌃= �ABC⇥ and
�(ABC)D⇥ = �B⇥�ACD⇥.
Then by using the following relations

((ABC)DE) = ((ADC)BE) = (AB(CDE)) = (AD(CBE)) ,

(A(BCD)E) = (A(DCB)E), (4.4)

one can directly prove that the skew-symmetric Nambu bracket (4.3) with the triple-
product (4.2) obeys the F.I. (3.3).
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What does correspond to                                    ,“Nambu 
transformation”, in terms of matrices?                                                                       

We need something with an exact significance even for finite N ! 

We started this program in the late 90s:  
Unfortunately, however, we could not accomplish it at that time.  

Difficulty: causal time development should automatically emerge.   
But how? 



We should seek finite matrix versions of Nambu bracket!

1. skew symmetry

1 Extension of ALMY proposal for “quantizing” Nambu bracket

1.1 Classical triple commutator and 3D area-preserving diffeomorphisms

Nambu’s idea is to extend the usual Hamiltonian dynamics

dX

dt
= {H,X} (1)

{F,G} =
∂F

∂ξ2

∂G

∂ξ1
− ∂G

∂ξ1

∂F

∂ξ2
(2)

in phase space (ξ1, ξ2) = (q, p) of canonical variables to arbitrary dimensional extended

phase space, especially to odd dimensions. The volume preservation

∂iDi(H) = 0 (3)

becomes manifest by expressing the Hamilton equation as

dX

dt
= Di(H)∂iX, Di(H) ≡ ϵij ∂H

∂ξj
(4)

Let us first start by recapitulating the original Nambu bracket on the basis of my old

note. Consider 3D space

(ξ1, ξ2, ξ3)

, which is supposed to be the coordinate parameters for a single classical membrane. Area

(volume) preserving diffeomorphism (APD) is given by

ξi → yi(ξ) (5)

such that

{y1, y2, y3} = 1 (6)

where

{A,B,C} ≡ ϵijk∂iA∂jB∂kC (7)

is the Nambu-Poisson (NP) bracket (triple bracket), which satisfies

1. Skew symmetry

{A1, A2, A3} = (−1)ϵ(p){Ap(1), Ap(2), Ap(3)} (8)

where p(i) is the permutation of indices and ϵ(p) is the parity of the permutation.

2

2. Leipniz rule

2. Derivation

{A1A2, A3, A4} = A1{A2, A3, A4} + {A1, A3, A4}A2 (9)

3. Fundamental identity (FI-1)

{{A1, A2, A3}, A4, A5} + {A3, {A1, A2, A4}, A5}

+{A3, A4, {A1, A2, A5}} = {A1, A2, {A3, A4, A5}} (10)

The 3D APD involves 2 independent functions. Let them be f and g. The infinitesimal

3D APD generator is then given as

D(F,G) ≡ ϵijk∂jF∂kG ∂i (11)

≡ Di(F,G) ∂i (12)

The area-preserving property is nothing but the identity

∂iD
i(F,G) = ∂k(ϵ

ijk∂iF∂jG) = 0 (13)

Now for an arbitrary scalar function X(ξi), the 3D APD acts as

D(F,G)X = {F,G,X} = Di(F,G)∂iX (14)

Apart from the issue of global definition of the functions f, g, we can represent an arbitrary

infinitesimal area-preserving diffeomorphism in this form.

On the other hand, if the base 3D space {ξi} of the membrane is mapped on the world

volume embedded into a target space of dimension d whose coordinates are Xα (α =

1, 2, . . . , d), the induced infinitesimal area (volume) element is

dV ≡
√
{Xα, Xβ, Xγ}2dξ1dξ2dξ3 (15)

assuming for simplicity that the target space is a flat Euclidean space. This is of course

invariant under general 3D diffeomorphisms.

The triple product {Xα, Xβ, Xγ} is “invariant” under the APD. Or more precisely, it

transforms as a scalar. Namely,

{Y α, Y β, Y γ}− {Xα, Xβ, Xγ} = ϵD(F,G){Xα, Xβ, Xγ} + O(ϵ2) (16)
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first introduced by Takhtajan, and others, ~1993

basic properties of classical Nambu bracket

3. is the most crucial property from the viewpoint of  
symmetry transformations



NB:  
　we are not going to pursue Nambu’s original idea  
   of “generalized Hamilton dynamics”, in this review.  

For another new development of Nambu dynamics from a different    
perspective (aiming towards “wave-mechanical quantization”),  
see T.Y., “Generalized Hamilton-Jacobi Theory of Nambu Mechanics”, PTEP 
023A01(2017)[arXiv:1612:08509].

We develop the approach (i) further, and extend it in the 
framework of a Lorentz invariant canonical formalism  

as a tool for realizing higher gauge symmetries.  

T.Y.,  JHEP06(2016)058 [arXiv: 1603.06402]

It should be emphasized that we do not assume the relation between the 
membrane action and Nambu bracket: such an analogy is not essential 
from the viewpoint of DLCQ interpretation. Matrix theory is not just a 
regularization of supermembrane. 



Canonical formalism for higher gauge symmetries

f !ab
c = −fa !b

c = fab !

c = fab
c (71)

fabc

! = 0, fabc
d = 0 (72)

Indeed, putting

F = F !T

! + FaT
a, G = G !T

! + GaT
a, etc. , (73)

we obtain the following expression which is equivalent with the ALMY bracket.

[F,G,H] = F !GaHbf

!ab
cT

c + G !FaHbf
a "b

cT
c + H !FaGbf

ab !

cT
c (74)

= F ![G, H ] + G ![H , F ] + H ![F ,G] (75)

where and in what follows matrix components are in general denoted by boldface symbols

A = A !T

! + A, A ≡ AaT
a (76)

Here, it is to be noted that the component A ! needs not be identified with Tr(A).

———

A◦ A• A " A! A" A !

A ! A "

——–

We now take the matrices X,Y , ... together with auxiliary partners X !, Y !, ... as dy-

namical variables.

X = (X !, X), Y = (Y !,Y ), . . .

[X,Y, Z] ≡ (0, X ![Y ,Z] + Y ![Z,X] + Z ![X, Y ])

[X,Y, Z] = −[Y,X,Z] = −[X,Z, Y ] = −[Z, Y,X]

[F,G, [X,Y, Z]] = [[F,G,X], Y, Z] + [X, [F,G, Y ], Z] + [X,Y, [F,G,Z]]

< [F,G,U ], V > + < U, [F,G, V ] >= 0

< U, V >≡ Tr(UV )

for any pair U = (0,U), V = (0,V ) and

< U, V >= Tr(U , V )

11

total skew symmetry⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄
For any pair (A,B) with A ! = 0 = B !, Tr(A) = 0 = Tr(B), we can define invariant

bilinear product

⟨A,B⟩ = Tr(AB) (77)

The reason for this is simply that the 3-bracket gauge transformation reduces to the usual

2-bracket ( namely, commtator) gauge transformation

[F,G,A] = [F !G − G !F , A] (78)

By choosing A = B = [C,D,E], the bilinear internal product of arbitrary pair of 3-bracket

is invariant.

⟨[C,D,E], [C,D,E]⟩ = Tr
(
(C ![D, E] + D ![E, C] + E ![C, D])2

)

= Tr
(
C2

! [D, E]2 + D2

! [E,C]2 + E2

! [C,D]2

+ 2[D !D,E][E, C !C] + 2[D, E !E][C !C,D] + 2[E !E, C][C, D "D]
)

(79)

However, there is no bilinear product involving the added components A !, B ! etc. If

we require these components together with matrix components play a role of dynamical

variables, it is desirable such bilinear products with these components. Let us examine

3-bracket gauge transformation Tr(A,B) in the general case.

Tr
(
([F !G − G !F ,A] + A ![F ,G])B + A([F !G − G !F ,B] + B ![F ,G]))

)

= Tr
(
A ![F , G]B + AB ![F ,G]

)
= A !Tr([F ,G]B) + Tr([F ,G]A)B ! (80)

This indicates that we can have invariant bilinear product

⟨A,B⟩ ≡ A !B " + A "B ! + Tr(AB) (81)

by adding another component A ", B " as dual corresponding to A !, B !, respectively, such

that infinitesimal gauge transformation are given by

[F,G,A] " = −Tr([F ,G]A), (82)

[F,G,B] " = −Tr([F ,G]B) (83)
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M, like XM, YM, ZM, · · · , for the coordinate-type dynamical variables involving D-particle
coordinates. These variables are assumed to be scalars with respect to the reparametriza-
tion of τ . When we deal with matrix elements explicitly, we designate them as Xab without
boldface symbol. Originally in ref. [8] we identified the XM’s to be the traces of the cor-
responding matrices. But that is not necessary, and in the present paper we treat them as
independent dynamical degrees of freedom.5 This is the price we have to pay to realize a
higher gauge symmetry, but we will have some reward too. We will later introduce differ-
ent and independent matrices and associated variables for the momentum-type dynamical
variables, involving D-particle momenta as canonical conjugates of the coordinate-type
variables. When it is necessary to extract the trace part of matrix variables, we denote
them by another special subscript ◦ such as

X◦ ≡
1
N

Tr(X), X = X◦ + X̂, Tr(X̂) = 0 (2.1)

with X̂ being the traceless part. It is sometimes convenient to represent the pair (XM,X)
symbolically as

X ≡ (XM, X). (2.2)

The quantized NP bracket, which we simply call 3-bracket in what follows, is in general

[X,Y, Z] ≡ (0, XM[Y , Z] + YM[Z, X] + ZM[X, Y ]). (2.3)

Note that the M-component of [X,Y, Z] is zero by definition. This is totally skew-symmetric
and satisfies the so-called Fundamental Identity (FI) essentially as a consequence of the
usual Jacobi identity,

[F,G, [X,Y, Z]] = [[F,G,X], Y, Z] + [X, [F,G, Y ], Z] + [X,Y, [F,G,Z]]. (2.4)

The proof given in ref. [8] goes through as it stands for our slightly extended cases too. In
particular, the absence [X,Y, Z]M = 0 of the M-component for the 3-bracket is consistent
with the property that the matrix part of the right-hand side of (2.4), the contributions
involving the commutator [F ,G] cancel out among themselves.

If we interpret the bracket [F,G,X] for arbitrary variable X as an infinitesimal gauge
transformation, which is local with respect to the proper time τ ,

δX ≡ i[F,G,X] = (0, i[FMG − GMF , X] + i[F , G]XM) (2.5)

as a generalization of (1.5), the FI is nothing but the distribution law of gauge transforma-
tions for 3-bracket. Without loosing generality, we can assume that the gauge-parameter

5This situation itself is essentially the same as the treatment of the so-called Lorentzian version of

3-bracket which was utilized in attempting to extend the BLG model of conformal field theory for M2

branes as a possible effective low energy description for infinitely extended multiple M2 branes in an SO(8)-

invariant fashion. See e.g. [13] and references therein. However, our interpretation and treatment of them

are quite different from such attempts. In our canonical treatment no indefinite metric appears, except for

the usual space-time Lorentz indices. Our intention of using some unusual symbols below is partially in

order to emphasize the difference and to avoid possible confusions.
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❖ 3-bracket

(1) coordinate-type variables
❖  space-time vectors in 11 dimensions as functions                     

of a Lorentz-invariant time-parameter

From the viewpoint of relativistically covariant formulation of many-body systems in the
configuration-space picture as opposed to the usual second-quantized-field theory picture,
we usually expect that the proper time-parameter should be associated independently with
each particle degree of freedom, since we have to impose mass-shell conditions separately
to each particle.4 This is possible in the usual relativistic quantum mechanics where we
can separately treat particle degrees of freedom and field degrees of freedom which mediate
interactions among particles, especially using Dirac’s interaction representation. However,
in the matrix models such as super Yang-Mills quantum mechanics, such a separation is
not feasible, since the SU(N) gauge symmetry associated with matrices requires us to treat
the coordinate degrees and interaction degrees of freedom embedded together in each ma-
trix as a single entity. In fact, in either case of M-theory compactifications of the super
Yang-Mills quantum mechanics, there is no trace of mass-shell conditions set independently
for each constituent parton. We extend a higher gauge symmetry exhibited in our version
of quantized Nambu bracket, and show that it provides a novel mechanism for formulating
many-body systems covariantly in a configuration space formulation, replacing methods
with many independent proper times and characterizing the peculiar general-relativisitic
nature of D-particles as the partons of M-theory.

In section 2, we first reformulate our old proposal for a discretized Nambu bracket, and
introduce a covariant canonical formalism to develop higher gauge transformations which
are crucially important to the present work. In section 3, we present the bosonic part of
our action. We discuss various symmetry properties of the action and their implications.
In particular, it will be demonstrated that our theory reduces to the usual formulation of
Matrix theory in a light-front gauge. In section 4, we extend our theory to a supersymmetric
theory, with some details being relegated to Appendix. In section 5, we conclude by
mentioning various future possibilities and confronting problems.

2. Canonical formalism of higher gauge symmetries

In the present and next sections, for the purpose of explaining the basic ideas and for-
malisms in a simple setting without complications of fermionic degrees of freedom, we
restrict ourselves to bosonic variables. Extension to including fermionic variables in a
supersymmetric fashion will be discussed later.

We start first from briefly recapitulating our old proposal for a quantized version of
the NP bracket in the matrix form in the first part (1) and then in sequels, part (2) and
part (3), we will extend our discussions further in the framework of a first-order canonical
formalism.

2.1 Coordinate-type variables

We denote N×N hermitian matrix variables using slanted boldface symbol, like X, Y , Z, · · · ,
and introduce non-matrix variables associated with them and denoted by a special subscript

4For instance, we can recall the old many-time formalism of Dirac-Fock-Podolsky [12]. It should also

be remembered that the usual Feynman-diagram method is a version of covariant many-body theories

in configuration space. The Feynman parameters or Schwinger parameters play the role of proper times

introduced for each world line separately.
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 “M”-variables 
(auxiliary but dynamical)
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calculation, it is easy to confirm that the FI is valid:

[A,B, [C,D,E]] = [[A, B,C], D,E] + [C, [A, B,D], E] + [C,D, [A,B,E]].

A crux of such a calculation is that the terms involving the commutator
[A,B] cancel among themselves on the r.h.side, to be consistent with the
l.h.side with [C,D,E]M ≡ 0. The remaining terms are arranged into the
form coinciding with the l.h.side using the ordinary Jacobi identities for
matrix commutators.

Now, the dynamical variables and also the parameters of higher trans-
formations are in general a set of matrices and associated auxiliary variables
which are denoted by A = (AM ,A), . . . , etc. Thus we denote the space-
time coordinate variables by Xµ(τ) = (Xµ

M(τ), Xµ(τ)). We introduced an
(Lorentz) invariant (proper) time parameter τ . The roles of τ and of the
auxiliary variables Xµ

M(τ) will be discussed later.
The higher transformations are defined to be

δXµ = i[F,G,Xµ]

with two “parameters”, F = (FM, F ) and G = (GM,G) of local transforma-
tions, both of which are arbitrary functions of time. Therefore the auxiliary
variable of these spacetime coordinate variables are invariant under higher
transformations by definition,

δXµ
M = 0,

while their matrix part is transformed as

δXµ = i[FMG − GMF , Xµ] + i[F , G]Xµ
M.

The first term takes the form of usual SU(N) (infinitesimal) unitary trans-
formation with the hermitian matrix FMG − GMF . The second term rep-
resents a shift of the matrix. Due to this term, we can shift using the
traceless matrix i[F , G] which is almost (but not completely) independent
of the first term. As in the case of the Nambu equations of motion, we can
treat this shift as being completely independent of the first term by a slight
generalization. Namely, in analogy with (23), we generalize the transfor-
mation by introducing an arbitrary number of pairs (F (r), G(r)) instead of
a single pair (F,G) to

δHLXµ = δHXµ + δLXµ = (0, i[H, Xµ]) + (0,LXµ
M) (32)
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Perhaps, some of you may wonder about the feasibility of only a single
proper time, in spite of the fact that we are here dealing with a many-
particle theory. In a standard method of treating many-particles relativis-
tically, we usually introduce proper time for each particle separately. In our
case, however, that is very difficult to do, since we cannot actually separate
particle degrees of freedom and the other degrees of freedom which mediate
interactions among them. This peculiarity has been already emphasized in
Part I of this lecture. It is more natural to describe the dynamics using a
single global (but Lorentz invariant) “time” synchronized independently of
the sizes of matrices to all subsystems, when we decompose a system into
several subsystems, since they are interacting non-locally, once we adopt
the description of Matrix theory.

We demand that the canonical brackets are invariant under the higher
transformations. This requirement fixes the transformation laws of the
momentum variables as

δHLP
µ = i[H,P µ] ≡ δHP µ, δHLP

µ
M = −Tr

(
LP µ

)
≡ δLP

µ
M. (34)

The generator of the higher transformations with respect to the Poisson
brackets is

CHL ≡ Tr
(
P µ

(
i[H,Xµ] +LXµ

M

))
, (35)

by which the transformation of an arbitrary functions O =
O(XM,X, PM,P ) takes the form δHLO = {O, CHL}. Since the transforma-
tion δHLP

µ ≡ δHP µ coincides with the ordinary SU(N) transformation,
we have an integral invariant, simply by taking the trace of any product of
momentum matrices, as

∫
dτ eTr(P · P ). (36)

This is in contrast to the coordinate matrices, where there is a shift term
in δHLX

µ but no transformation of the M-variable. In the case of momen-
tum, the M-variable has a shift-type transformation instead of the matrix
variables. Thus the usual kinetic term is not allowed for Pµ

M as it stands.
Together with the integral invariant corresponding to the potential term,

it is important to notice that our system has a simple global symmetry
under scaling τ → λ2τ of the propertime parameter:

Xµ → λXµ, Xµ
M → λ−3Xµ

M, P µ → λ−1P µ, Pµ
M → λ−3Pµ

M, (37)



 local (with respect to      ) gauge transformation

a single matrix can be gauged away to the unit matrix, 
if it is as sociated with non-zero M-variable

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄
For any pair (A,B) with A ! = 0 = B !, Tr(A) = 0 = Tr(B), we can define invariant

bilinear product

⟨A,B⟩ = Tr(AB) (77)

The reason for this is simply that the 3-bracket gauge transformation reduces to the usual

2-bracket ( namely, commtator) gauge transformation

[F,G,A] = [F !G − G !F , A] (78)

By choosing A = B = [C,D,E], the bilinear internal product of arbitrary pair of 3-bracket

is invariant.

⟨[C,D,E], [C,D,E]⟩ = Tr
(
(C ![D, E] + D ![E, C] + E ![C, D])2

)

= Tr
(
C2

! [D, E]2 + D2

! [E,C]2 + E2

! [C,D]2

+ 2[D !D,E][E, C !C] + 2[D, E !E][C !C,D] + 2[E !E, C][C, D "D]
)

(79)

However, there is no bilinear product involving the added components A !, B ! etc. If

we require these components together with matrix components play a role of dynamical

variables, it is desirable such bilinear products with these components. Let us examine

3-bracket gauge transformation Tr(A,B) in the general case.

Tr
(
([F !G − G !F ,A] + A ![F ,G])B + A([F !G − G !F ,B] + B ![F ,G]))

)

= Tr
(
A ![F , G]B + AB ![F ,G]

)
= A !Tr([F ,G]B) + Tr([F ,G]A)B ! (80)

This indicates that we can have invariant bilinear product

⟨A,B⟩ ≡ A !B " + A "B ! + Tr(AB) (81)

by adding another component A ", B " as dual corresponding to A !, B !, respectively, such

that infinitesimal gauge transformation are given by

[F,G,A] " = −Tr([F ,G]A), (82)

[F,G,B] " = −Tr([F ,G]B) (83)
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M, like XM, YM, ZM, · · · , for the coordinate-type dynamical variables involving D-particle
coordinates. These variables are assumed to be scalars with respect to the reparametriza-
tion of τ . When we deal with matrix elements explicitly, we designate them as Xab without
boldface symbol. Originally in ref. [8] we identified the XM’s to be the traces of the cor-
responding matrices. But that is not necessary, and in the present paper we treat them as
independent dynamical degrees of freedom.5 This is the price we have to pay to realize a
higher gauge symmetry, but we will have some reward too. We will later introduce differ-
ent and independent matrices and associated variables for the momentum-type dynamical
variables, involving D-particle momenta as canonical conjugates of the coordinate-type
variables. When it is necessary to extract the trace part of matrix variables, we denote
them by another special subscript ◦ such as

X◦ ≡
1
N

Tr(X), X = X◦ + X̂, Tr(X̂) = 0 (2.1)

with X̂ being the traceless part. It is sometimes convenient to represent the pair (XM,X)
symbolically as

X ≡ (XM, X). (2.2)

The quantized NP bracket, which we simply call 3-bracket in what follows, is in general

[X,Y, Z] ≡ (0, XM[Y , Z] + YM[Z, X] + ZM[X, Y ]). (2.3)

Note that the M-component of [X,Y, Z] is zero by definition. This is totally skew-symmetric
and satisfies the so-called Fundamental Identity (FI) essentially as a consequence of the
usual Jacobi identity,

[F,G, [X,Y, Z]] = [[F,G,X], Y, Z] + [X, [F,G, Y ], Z] + [X,Y, [F,G,Z]]. (2.4)

The proof given in ref. [8] goes through as it stands for our slightly extended cases too. In
particular, the absence [X,Y, Z]M = 0 of the M-component for the 3-bracket is consistent
with the property that the matrix part of the right-hand side of (2.4), the contributions
involving the commutator [F ,G] cancel out among themselves.

If we interpret the bracket [F,G,X] for arbitrary variable X as an infinitesimal gauge
transformation, which is local with respect to the proper time τ ,

δX ≡ i[F,G,X] = (0, i[FMG − GMF , X] + i[F , G]XM) (2.5)

as a generalization of (1.5), the FI is nothing but the distribution law of gauge transforma-
tions for 3-bracket. Without loosing generality, we can assume that the gauge-parameter

5This situation itself is essentially the same as the treatment of the so-called Lorentzian version of

3-bracket which was utilized in attempting to extend the BLG model of conformal field theory for M2

branes as a possible effective low energy description for infinitely extended multiple M2 branes in an SO(8)-

invariant fashion. See e.g. [13] and references therein. However, our interpretation and treatment of them

are quite different from such attempts. In our canonical treatment no indefinite metric appears, except for

the usual space-time Lorentz indices. Our intention of using some unusual symbols below is partially in

order to emphasize the difference and to avoid possible confusions.
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If we interpret the bracket [F,G,X] for arbitrary variable X as an infinitesimal gauge
transformation, which is local with respect to the proper time τ ,

δX ≡ i[F,G,X] = (0, i[FMG − GMF , X] + i[F , G]XM) (2.5)

as a generalization of (1.5), the FI is nothing but the distribution law of gauge transforma-
tions for 3-bracket. Without loosing generality, we can assume that the gauge-parameter

5This situation itself is essentially the same as the treatment of the so-called Lorentzian version of

3-bracket which was utilized in attempting to extend the BLG model of conformal field theory for M2

branes as a possible effective low energy description for infinitely extended multiple M2 branes in an SO(8)-

invariant fashion. See e.g. [13] and references therein. However, our interpretation and treatment of them

are quite different from such attempts. In our canonical treatment no indefinite metric appears, except for

the usual space-time Lorentz indices. Our intention of using some unusual symbols below is partially in

order to emphasize the difference and to avoid possible confusions.
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Perhaps, some of you may wonder about the feasibility of only a single
proper time, in spite of the fact that we are here dealing with a many-
particle theory. In a standard method of treating many-particles relativis-
tically, we usually introduce proper time for each particle separately. In our
case, however, that is very difficult to do, since we cannot actually separate
particle degrees of freedom and the other degrees of freedom which mediate
interactions among them. This peculiarity has been already emphasized in
Part I of this lecture. It is more natural to describe the dynamics using a
single global (but Lorentz invariant) “time” synchronized independently of
the sizes of matrices to all subsystems, when we decompose a system into
several subsystems, since they are interacting non-locally, once we adopt
the description of Matrix theory.

We demand that the canonical brackets are invariant under the higher
transformations. This requirement fixes the transformation laws of the
momentum variables as

δHLP
µ = i[H,P µ] ≡ δHP µ, δHLP

µ
M = −Tr

(
LP µ

)
≡ δLP

µ
M. (34)

The generator of the higher transformations with respect to the Poisson
brackets is

CHL ≡ Tr
(
P µ

(
i[H,Xµ] +LXµ

M

))
, (35)

by which the transformation of an arbitrary functions O =
O(XM,X, PM,P ) takes the form δHLO = {O, CHL}. Since the transforma-
tion δHLP

µ ≡ δHP µ coincides with the ordinary SU(N) transformation,
we have an integral invariant, simply by taking the trace of any product of
momentum matrices, as

∫
dτ eTr(P · P ). (36)

This is in contrast to the coordinate matrices, where there is a shift term
in δHLX

µ but no transformation of the M-variable. In the case of momen-
tum, the M-variable has a shift-type transformation instead of the matrix
variables. Thus the usual kinetic term is not allowed for Pµ

M as it stands.
Together with the integral invariant corresponding to the potential term,

it is important to notice that our system has a simple global symmetry
under scaling τ → λ2τ of the propertime parameter:

Xµ → λXµ, Xµ
M → λ−3Xµ

M, P µ → λ−1P µ, Pµ
M → λ−3Pµ

M, (37)

generalized to 

matrix functions F and G are both traceless. As emphasized in ref. [8] , an important
characteristic property of this gauge transformation is that it enables us to gauge away the
trace part of one of the matrix variables whenever its M component is not zero, due to the
second term in (2.5). On the other hand, it should be kept in mind that the trace-part of
the matrices and also Xµ

M are inert (δXµ
◦ = 0 = δXµ

M ) against the gauge transformations
(2.5). We will soon extend the gauge transformation slightly such that the center-of-mass
coordinate (but still not for XM) is also subject to extended transformations.

Actually, it is useful to generalize gauge transformation to

δfgX = i
∑

r

[F r, Gr, X] =
(
0,

∑

r

i[F r
MGr − Gr

MF r, X] + i
∑

r

[F r, Gr]XM
)

(2.6)

by introducing an arbitrary number of independent gauge functions discriminated by in-
dices r = 1, 2, . . ..6 Since the FI (2.4) is satisfied for each r separately, it is still valid after
summing over them. This means that two traceless Hermitian matrices,

H ≡
∑

r

F r
MGr − Gr

MF r, (2.7)

L ≡ i
∑

r

[F r,Gr], (2.8)

can be regarded as being completely independent to each other. In what follows, we always
assume this generalized form of gauge transformation:

δfgX = (0, i[H,X] + LXM). (2.9)

For any pair of two matrices X, Y with vanishing M-components XM = 0 = YM, the
gauge transformation acting on the trace of the bilinear product of them

⟨X,Y ⟩ ≡ Tr(XY ) (2.10)

is invariant under the gauge transformation, because the gauge transformation then reduces
to a usual SU(N) transformation δfgX = i[H,X] and δfgY = i[H, Y ] and hence satisfies
a derivation property (δfgX)Y + X(δfgY ) = i[H, XY ]:

δfg⟨X,Y ⟩ ≡ ⟨δfgX,Y ⟩ + ⟨X, δfgY ⟩ = 0. (2.11)

Since the 3-brackets of arbitrary set of matrices always satisfy this condition by definition,
we have a non-trivial gauge invariant,

⟨[X,Y, Z], [U, V,W ]⟩ (2.12)

for arbitrary 6 coordinate-like variables X,Y, · · · , W , due to the FI (2.4). It is to be
kept in mind that for the products of matrices with (either and/or both) non-vanishing
M-components, the gauge transformation does not satisfy the derivation property, and

6Such an extension has been considered already by Nambu [9] himself in his attempt toward quantization.
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calculation, it is easy to confirm that the FI is valid:

[A,B, [C,D,E]] = [[A,B,C], D,E] + [C, [A,B,D], E] + [C,D, [A,B,E]].

A crux of such a calculation is that the terms involving the commutator
[A,B] cancel among themselves on the r.h.side, to be consistent with the
l.h.side with [C,D,E]M ≡ 0. The remaining terms are arranged into the
form coinciding with the l.h.side using the ordinary Jacobi identities for
matrix commutators.

Now, the dynamical variables and also the parameters of higher trans-
formations are in general a set of matrices and associated auxiliary variables
which are denoted by A = (AM ,A), . . . , etc. Thus we denote the space-time
coordinate variables byXµ(τ) = (Xµ

M(τ),Xµ(τ)). Here we have introduced
a Lorentz invariant (proper) time parameter τ . The roles of τ and of the
auxiliary variables Xµ

M(τ) will be discussed later.
The higher transformations are then defined to be

δXµ = i[F,G,Xµ]

with two “parameters”, F = (FM,F ) and G = (GM,G) of local transforma-
tions, both of which are arbitrary functions of time. Therefore the auxiliary
variable of these spacetime coordinate variables are invariant under higher
transformations by definition,

δXµ
M = 0,

while their matrix part is transformed as

δXµ = i[FMG−GMF ,Xµ] + i[F ,G]Xµ
M.

The first term takes the form of usual SU(N) (infinitesimal) unitary trans-
formation with the hermitian matrix FMG−GMF . The second term rep-
resents a shift of the matrix. Due to this term, we can shift Xµ using the
traceless matrix i[F ,G] which is almost (but not completely) independent
of the first term. As in the case of the Nambu equations of motion, we can
treat this shift as being completely independent of the first term by a slight
generalization. Namely, in analogy with (23), we generalize the transfor-
mation by introducing an arbitrary number of pairs (F (r), G(r)) instead of
a single pair (F,G) to

δHLX
µ = δHXµ + δLX

µ = (0, i[H,Xµ]) + (0,LXµ
M) (32)
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On the other hand, it should be kept in mind that both the trace-part of the matrices and

XM are inert (Tr(δX) = 0 = δXM ) against the gauge transformations (2.3). We will later

extend the gauge transformation slightly such that the center-of-mass coordinate (but still

not for XM) is also subject to extended gauge transformations.

Actually, it is useful to generalize the above gauge transformation to

δX = i
∑

r

[F r, Gr, X] =
(
0,
∑

r

i[F r
MGr −Gr

MF r,X] + i
∑

r

[F r,Gr]XM
)

(2.4)

by introducing an arbitrary number of independent gauge functions discriminated by in-

dices r = 1, 2, . . ..7 Since the FI (2.2) is satisfied for each r separately, it is still valid after

summing over them. This means that two traceless Hermitian matrices,

H ≡
∑

r

F r
MGr −Gr

MF r, (2.5)

L ≡ i
∑

r

[F r,Gr], (2.6)

can be regarded as being completely independent to each other. In what follows, we adopt

this generalized form of gauge transformation,

δHLX ≡ δHX + δLX = (0, i[H,X] +LXM), (2.7)

with an obvious decomposition into δH and δL. The 3-bracket form of gauge transformation

itself does not play any essential role for our development from this point on, though the

3-bracket notation will still be convenient symbolically in expressing action in a compact

form.

For any pair of two matrices X,Y with vanishing M-components XM = 0 = YM, the

trace of their bilinear product

⟨X,Y ⟩ ≡ Tr(XY ) (2.8)

is invariant under the gauge transformation, because the gauge transformation then reduces

to a usual SU(N) transformation δHLX = i[H,X] and δHLY = i[H,Y ] and hence satisfies

a derivation property (δHLX)Y +X(δHLY ) = i[H,XY ]:

δHL⟨X,Y ⟩ ≡ ⟨δHLX,Y ⟩+ ⟨X, δHLY ⟩ = 0. (2.9)

Unlike [9], this is valid irrespectively of vanishing or non-vanishing trace of matrices, due

to our treatment of XM’s as independent variables. Since the 3-brackets of an arbitrary set

of matrices always satisfy this condition of vanishing M-component as emphasized above,

we have a non-trivial gauge invariant,

⟨[X,Y, Z], [U, V,W ]⟩ (2.10)

for arbitrary six variables X,Y, · · · ,W , due to the FI (2.2). It is to be kept in mind that

for the products of matrices with (either and/or both) non-vanishing M-components, the

gauge transformation does not satisfy the derivation property, and consequently that the

traces of their products are not in general gauge invariant. This constrains systems if we

require symmetry under our gauge transformations.
7Such an extension has been mentioned already by Nambu [10] himself in his attempt toward a gener-

alized Hamiltonian mechanics.
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For any pair (A,B) with A ! = 0 = B !, Tr(A) = 0 = Tr(B), we can define invariant

bilinear product

⟨A,B⟩ = Tr(AB) (77)

The reason for this is simply that the 3-bracket gauge transformation reduces to the usual

2-bracket ( namely, commtator) gauge transformation

[F,G,A] = [F !G − G !F , A] (78)

By choosing A = B = [C,D,E], the bilinear internal product of arbitrary pair of 3-bracket

is invariant.

⟨[C,D,E], [C,D,E]⟩ = Tr
(
(C ![D, E] + D ![E, C] + E ![C, D])2

)

= Tr
(
C2

! [D, E]2 + D2

! [E,C]2 + E2

! [C,D]2

+ 2[D !D,E][E, C !C] + 2[D, E !E][C !C,D] + 2[E !E, C][C, D "D]
)

(79)

However, there is no bilinear product involving the added components A !, B ! etc. If

we require these components together with matrix components play a role of dynamical

variables, it is desirable such bilinear products with these components. Let us examine

3-bracket gauge transformation Tr(A,B) in the general case.

Tr
(
([F !G − G !F ,A] + A ![F ,G])B + A([F !G − G !F ,B] + B ![F ,G]))

)

= Tr
(
A ![F , G]B + AB ![F ,G]

)
= A !Tr([F ,G]B) + Tr([F ,G]A)B ! (80)

This indicates that we can have invariant bilinear product

⟨A,B⟩ ≡ A !B " + A "B ! + Tr(AB) (81)

by adding another component A ", B " as dual corresponding to A !, B !, respectively, such

that infinitesimal gauge transformation are given by

[F,G,A] " = −Tr([F ,G]A), (82)

[F,G,B] " = −Tr([F ,G]B) (83)

12

 integral invariant (potential term)
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is valid inside the bracket with respect to our higher gauge transformation.
Therefore we have, remembering [A,B,C]M = [X,Y, Z]M = 0,

δHL[A,B,C] = i[H, [A,B,C]], δHL[X,Y, Z] = i[H, [X,Y, Z]],

which ensures

δHL⟨[A,B,C], [X,Y, Z]⟩ =⟨δHL[A,B,C], [X,Y, Z]⟩+ ⟨[A,B,C], δHL[X,Y, Z]⟩
=0.

This result indicates that, corresponding to the potential term
Tr[Xi,Xj ]2 in the light-front Matrix theory, we have a simple integral
invariant composed of the coordinate matrices

1

12

∫
dτ e ⟨[Xµ, Xν , Xσ][Xµ, Xν , Xσ]⟩

=
1

4

∫
dτ eTr

(
X2

M[Xν ,Xσ][Xν ,Xσ]− 2[XM ·X,Xν ][XM ·X,Xν ]
)

(33)

where by (·) we denote the usual Lorentz invariant scalar product, and
the symbol e = e(τ) is the ein-bein, transforming as a density (e(τ)dτ =
e′(τ ′)dτ ′) under arbitrary reparametrization of the time parameter τ .
Clearly, the above form of the potential term is contained in the first term
of this expression, if we are allowed to identify the Lorentz invariant X2

M

with the M-theory parameters appropriately. Later we will examine this
question and also whether other terms may be ignored in the physical space.

9. Lorentz-invariant canonical formalism of higher
symmetries with further extensions

We treat this dynamical system by a canonical formalism with respect
to a single Lorentz-invariant time parameter τ , and introduce momentum
variables, denoted by (Pµ

M,P µ), which are canonically conjugate in the
usual sense to the coordinate variables Xµ = (Xµ

M,Xµ). The canonical
Poisson brackets are thus

{Xµ
M, P ν

M}P = ηµν ,

{Xµ
ab, P

ν
cd}P = δadδbcη

µν ,

with all other Poisson brackets being zero (e.g. {Xµ
ab, P

ν
M}P = 0, etc). Note

that the appearance of the indefinite 11-dimensional Minkowkian metric
ηµν is due to our fundamental requirement of 11-dimensional Lorentz co-
variance.

in order to preserve re-parametrization invariance

einbein

generalizes its continuous counterpart, the area-preserving diffeomorphism transformations

formulated a la Nambu’s mechanics

δXµ = {F,G,Xµ}N, (1.5)

with (F (ξ), G(ξ)) being two independent local gauge parameter-functions. At that time,

we could not accomplish this program. One of the stumbling blocks was our tacit demand

that the light-front time coordinate should also emerge automatically in the process of

gauge fixing. This seemed to be necessary because (1.4) involves a time derivative.

In the present work, we reconsider the program of the covariantization of M(atrix)

theory.2 However, we do not pursue the above mentioned analogy with the theory of su-

per membrane too far. In particular, we do not assume the above relation between the

membrane action and Nambu bracket. Such an analogy does not seem to be essential from

the viewpoint of the DLCQ interpretation with finite N , since this analogy suggests the

covariance could only be recovered in a large N limit. We use Nambu-type transformations

only as a convenient tool to motivate higher gauge symmetries which would be necessarily

required for achieving manifest covariance using 11 dimensional matrix variables: an appro-

priate gauge-fixing of such higher gauge symmetries would lead us to the usual light-front

theory with 9 dimensional matrix variables.

With regards to the problem of the emergence of time parameter describing the causal

dynamics of matrices, we reset our goal at a lower level. Namely, we introduce from

the outset a single Lorentz invariant (proper) time parameter τ together with an “ein-

bein” auxiliary variable e(τ), which transforms as dτe(τ) = dτ ′e′(τ ′) under an arbitrary

re-parametrization τ → τ ′ and generates the mass-shell condition for the center-of-mass

variables with an effective mass-square operator. Thus the proper-time is essentially as-

sociated with the trajectory of the center-of-mass. From the viewpoint of relativistically

covariant formulation of many-body systems in the configuration-space picture, as opposed

to the usual second-quantized-field theory picture, we would expect that the proper time-

parameter should be associated independently with each particle degree of freedom, since

we have to impose mass-shell conditions separately to each particle.3 This is possible in

the usual relativistic quantum mechanics where we can separately treat particle degrees

of freedom and field degrees of freedom which mediate interactions among particles, espe-

cially using Dirac’s interaction representation. However, in matrix models such as super

Yang-Mills quantum mechanics, such a separation is not feasible, since the SU(N) gauge

2For examples of other attempts of applying Nambu brackets towards extended formulations of Matrix

theory, see e.g. [12] and references therein. For earlier and different approaches related to our subject,

see [13] most of which discussed only the bosonic part, and more recent works [14], based on the so-called

‘super-embedding’ method, the latter of which however introduced only SO(9) matrices in contrast to one

of basic requirements stressed in the present paper.
3For instance, we can recall the old many-time formalism [15]. It should be remembered that the

usual Feynman-diagram method is a version of covariant many-body theories in configuration space. The

Feynman parameters or Schwinger parameters play the role of proper times introduced for each world line

separately. It is also to be recalled that one of the Virasoro constraints, P 2+(X ′)2 = 0, in string theory (and

the similar constraints in membrane theory) can be viewed as a counterpart of the mass-shell condition,

imposed at each points on world sheets (or volumes).
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where

H ≡
∑

r

F (r)
M G(r) −G(r)

M F (r),

L ≡ i
∑

r

[F (r),G(r)]

are now regarded as two independent (traceless) hermitian matrices. In
this form, there is no problem associated with “gauge” symmetry (20) in
the sense worried by Nambu. Of course, once we have this form, we could
actually forget about its origin from Nambu bracket. Our standpoint would
coincide with my previous remark on the direct use of vector gauge field
Aa in section 5, concerning the meaning of the general form (21) in Nambu
mechanics. Even if so, however, the bracket notation will still be very useful
and convenient in expressing invariants succinctly.

The shift term enables one to eliminate the traceless part of any single
matrix, whenever the auxiliary variable associated with it is not zero, by
a local gauge transformation. For example, if X0

M is non-zero, we can
transform the martrix X0 into the unit matrix up to a single proportional
function.

Now the next important question is this: what are, if any, invariants
under these higher transformations? Obviously, usual traces of matrix prod-
ucts, such as Tr(XY ), cannot in general be invariant, unless XM = 0 = YM

which however seems to render the higher part of the transformations in-
effective. There is a simple resolution. The matrices should appear only
through triple brackets, for which themselves the auxiliary M-components
are equal to zero by definition. The simplest non-trivial example is, with
arbitrary two sets of variables (A,B,C) and (X,Y, Z),

⟨[A,B,C], [X,Y, Z]⟩ ≡ Tr
(
(AM[B,C] +BM[C,A] + CM[A,B])

× (XM[Y ,Z] + YM[Z,X] + ZM[X,Y ])
)
.

Because the FI is valid for each component r,

[F r, Gr, [A,B,C]] = [[F r, Gr, A], B, C]+[A, [F r, Gr, B], C]+[A,B, [F r, Gr, C]],

it is valid after summing over r too. This means that the derivation (or
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(2) momentum-type variables

hence, with the subscript “M”. We assume that Xµ
M is a conserved vector, but just as

background metrics and boundary conditions which are not Lorentz invariant are subject
to 11 dimensional Lorentz transformations, the M-variables should transform as dynamical
vector variables. Further remarks on the role of the M-variables will be given in section 3.

2.2 Momentum-type variables and gauge transformation as a canonical trans-
formation

In the present paper, we develop a Lorentz-covariant first-order formalism for the above
structure by introducing the conjugate momenta as independent dynamical variables. In
other words, we use a Hamiltonian formalism with respect to the Lorentz-invariant proper
time τ . The canonical conjugates of the generalized coordinates are denoted by

Pµ = (Pµ
M, P µ), (2.18)

where Pµ
M and P µ are conjugate to Xµ

M and Xµ, respectively. The equal-time canonical
Poisson algebra are7, exhibiting matrix indices explicitly,

{Xµ
M, P ν

M}P = ηµν , (2.19)

{Xµ
ab, P

ν
cd}P = δadδbcη

µν , (2.20)

with all other Poisson brackets being zero (e.g. {Xµ
ab, P

ν
M}P = 0, etc).

We demand that the canonical Poisson brackets are preserved by gauge transforma-
tions. The gauge symmetry of the canonical structure ensures us that we can consistently
implement various gauge constraints when we quantize the system. On the basis of this
requirement, we can determine the gauge transformations of canonical momenta uniquely
for the traceless part of matrix variables, together with the M-variables.8 The results are

δfgP
µ = i[H, P µ], (2.21)

δfgP
µ
M = −Tr

(
LP µ

)
. (2.22)

The mixing of P µ into Pµ
M exhibited in (2.22), which is the counterpart to the mixing of Xµ

and Xµ
M in the coordinate part, is necessary to guarantee the vanishing of δfg{Xµ

ab, P
ν
M}P:

δfg{Xµ
ab, P

ν
M}P = Labη

µν − Tr
(
L{Xµ

ab,P
ν}P

)
= 0. (2.23)

It should be kept in mind that the laws of gauge transformation are different between the
coordinate-type and momentum-type variables.

For arbitrary functions O = O(XM, X, PM, P ) of the generalized coordinates and
momenta, the gauge transformation is expressed as a canonical transformation δfgO =
{O, Cfg}P in terms of an infinitesimal generator defined as

Cfg ≡ Tr
(
Pµ

(
i[H, Xµ] + LXµ

M

))
, (2.24)

7Our Lorentz metric is (1, 1, · · · , 1,−1).
8As we have promised above, further gauge symmetries associated with the trace part will be discussed

in the next section.
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canonical conjugates to the coordinate-type variables,  
as independent dynamical variables

“M-momentum”

 Basic requirement: canonical structure is preserved under 
gauge transformations

generator: 

It is perhaps here appropriate to pay attention to a possible interpretation of the

mysterious additional vector Xµ
M. From the viewpoint of 11 dimensional supergravity, the

embedding of the (type IIA) string theory built on a flat 10 dimensional Minkowski space-

time necessitates specifing a background 11-dimensional metric with appropriate boundary

conditions. Remember that the dilaton (and hence, the string coupling gs) emerges in this

process. Consequently, it tacitly introduces a particular Lorentz frame in 11 dimensional

Minkowski space-time. The vector Xµ
M can be regarded as playing a similar role in our

covariantized Matrix theory, and for this reason we call Xµ
M and its conjugate momentum

Pµ
M to be introduced below “M-variables”: hence, with the subscript “M”. We assume that

Xµ
M is a conserved vector, and also that just as the 10-dimensional background metrics

and boundary conditions which are not Lorentz invariant are subject to 11-dimensional

Lorentz transformations, the M-variables transform as dynamical vector variables. Further

remarks on the role of the M-variables will be given in section 3.

2.3 Momentum-type variables

In the present paper, we develop a Lorentz-covariant first-order formalism by introducing

the conjugate momenta as independent dynamical variables. In other words, we use a

Hamiltonian formalism with respect to the Lorentz-invariant proper time τ . The canonical

conjugates of the generalized coordinates are denoted by
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requirement, we can determine the gauge transformations of canonical momenta uniquely
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µ = i[H , P̂ µ] = δHP µ, (2.21)
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µ
M = −Tr

(
LP µ

)
= δLP

µ
M. (2.22)

The mixing of P µ into Pµ
M exhibited in (2.22), which is the counterpart to the mixing of Xµ

and Xµ
M in the coordinate part, is necessary to guarantee the vanishing of δHL{Xµ

ab, P
ν
M}P:
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It should be kept in mind that the laws of gauge transformation are different between

the coordinate-type and momentum-type variables. In particular, the transformation law

(2.21) ensures that the ordinary traces such as Tr(P µPµ) of products of purely momentum

variables are gauge invariant, as opposed to those involving the coordinate-type matrices.

For arbitrary functions O = O(XM,X, PM,P ) of the generalized coordinates and

momenta, the gauge transformation is expressed as a canonical transformation δHLO =

{O, CHL}P in terms of an infinitesimal generator defined as

CHL ≡ Tr
(
Pµ

(
i[H,Xµ] +LXµ

M

))
, (2.24)

making the invariance of canonical structure under the gauge transformations manifest. We

note that our canonical transformations are explicitly proper-time dependent through time-

dependent H and L. In the usual canonical formalism, such a time-dependent canonical

transformation changes the Hamiltonian by a shift

∂

∂τ
CHL ≡ Tr

(
Pµ

(
i
[dH
dτ

,Xµ
]
+

dL

dτ
Xµ

M

))
. (2.25)

In our generalized relativistically-invariant canonical formalism, this shift-type contribution

is cancelled by the transformations of gauge fields. This is reasonable since the Hamilto-

nian in our system is zero after all, giving the Hamiltonian constraint associated with

re-parametrization invariance with respect to τ .

Being associated with these transformation laws, the covariant derivatives of momen-

tum variables are

D′P µ

Dτ
≡ dP µ

dτ
+ ie[A,P µ], (2.26)

D′Pµ
M

Dτ
≡

dPµ
M

dτ
+ eTr(BP µ), (2.27)

satisfying

δHL

(D′P µ

Dτ

)
= i[H ,

D′P µ

Dτ
], (2.28)

δHL

(D′Pµ
M

Dτ

)
= −Tr

(
L
D′P µ

Dτ

)
. (2.29)

It is important here to notice that these canonical structure and the associated co-

variant derivatives are invariant under a global (not as a local re-parametrization) scaling

transformation τ → λ2τ of the proper time, when the dynamical variables are transformed

as

Xµ → λXµ, Xµ
M → λ−3Xµ

M, (2.30)

P µ → λ−1P µ, Pµ
M → λ3Pµ

M, (2.31)

A → λ−2A, B → λ2B. (2.32)

Accordingly, the gauge functions must be scaled as

H → H , L → λ4L. (2.33)
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no shift term



As a whole, the gauge symmetries are generated by

and scalings are

B◦ → λ2B◦, Z → λ−2Z. (2.56)

The matrix gauge field Z is traceless by definition. From these expressions, one can now
see the reason why we reserved the symbol B: the new gauge fields B◦ can be regarded as
the trace component associated with the previous traceless gauge field B̂:

B ≡ B◦ + B̂. (2.57)

It is to be kept in mind that the conserved vectors Pµ
◦ and Xµ

M are both completely inert
under all of gauge transformations.

Provided that derivative terms in the action appear only through the first-order Poincaré
integral

∫
dτ

[
PM µ

dXµ
M

dτ
+ Tr

(
Pµ

DXµ

Dτ

)]
=

∫
dτ

[
PM µ

dXµ
M

dτ
+ P◦µ

DXµ
◦

Dτ
+ Tr

(
P̂µ

DX̂µ

Dτ

)]

(2.58)

= −
∫

dτ
[DPM µ

Dτ
Xµ

M +
dP◦µ

dτ
Xµ

◦ + Tr
(DP̂µ

Dτ
X̂µ

)]
,

which is, with generalized covariant derivatives, now invariant under the whole set of gauge
transformations, the Gauss contraints are precisely (2.38) and (2.39), corresponding to the
gauge fields B◦ and Z, respectively, together with those associated with B̂ and A.

Corresponding to the manifest Lorentz covariance of the canonical structure, the stan-
dard form of Lorentz generators

Mµν ≡ Xµ
MP ν

M − Xν
MPµ

M + Tr(XµP ν − XνP µ) (2.59)

are gauge invariant {Mµν , Cfg+ℓ+y}P = 0 and satisfy the Lorentz algebra with respect to
the Poisson bracket.

3. Bosonic action

We now have enough tools at our disposal to discuss the action integral. For simplicity, we
still concentrate to the bosonic part in this section. Our basic requirement is that the action
should have symmetries, apart from the requirement of full SO(10,1) Lorentz-Poincaré in-
variance, under all transformations, namely, τ -reparametrizations, gauge transformations,
and scale transformations which leave the canonical structure introduced in the previous
section invariant. Up to total derivatives, unique possibility for the first-order (with respect
to derivative) term is the Poincaré integral (2.58). As the simplest possible potential term
satisfying these requirements, we choose using (2.12),

1
12

∫
dτ e ⟨[Xµ, Xν , Xσ][Xµ, Xν , Xσ]⟩

=
1
4

∫
dτ e Tr

(
X2

M[Xν , Xσ][Xν , Xσ] − 2[XM · X, Xν ][XM · X, Xν ]
)
. (3.1)
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where w and Y are an arbitrary function and an arbitrary traceless matrix function, respec-

tively, as parameters of gauge transformations. It is to be noted that the other variables

not shown here explicitly are all inert in both cases, and also that the conserved vectors

Pµ
◦ and Xµ

M are both gauge invariant. The expression (2.24) of the canonical generator is

now generalized to

CH+L+Y+w = wP◦ ·XM +Tr
(
−(P◦ ·X)Y + iPµ[H,Xµ] + (XM · P )L

)
. (2.42)

We remark that, from the standpoint of the momentum-type variables, the combination

δHY = δH + δY can be regarded as the counterpart of δHL = δH + δL introduced previously

from the standpoint of the coordinate-type variables: in fact, δHY P̂ µ, if expressed in terms

of 3-bracket, is more akin to the original one introduced in [9], in the sense that it uses the

trace Pµ
◦ as the additional variable.

The covariant derivatives are now, generalizing previous definitions with prime sym-

bols,

DXµ
◦

Dτ
=

dXµ
◦

dτ
− eB◦X

µ
M + eTr(ZX̂µ), (2.43)

DX̂µ

Dτ
=

dX̂µ

dτ
+ ie[A,Xµ]− eBXµ

M, (2.44)

DPµ
M

Dτ
=

dPµ
M

dτ
+ eTr

(
(B +B◦)P

µ
)
=

dPµ
M

dτ
+ eTr(BP µ) + eB◦P

µ
◦ , (2.45)

DP̂ µ

Dτ
=

dP̂ µ

dτ
+ ie[A,P µ]− eZPµ

◦ , (2.46)

transforming as

(δHL + δw + δY )
(DXµ

◦
Dτ

)
= L

dXµ
M

dτ
− Tr

(
Y

DX̂µ

Dτ

)
, (2.47)

(δHL + δw + δY )
(DX̂µ

Dτ

)
= i[H,

DX̂µ

Dτ
] +L

dXµ
M

dτ
, (2.48)

(δHL + δw + δY )
(DP µ

M

Dτ

)
= −Tr

(
L
DP µ

Dτ

)
− L

dPµ
◦

dτ
, (2.49)

(δHL + δw + δY )
(DP̂ µ

Dτ

)
= i[H ,

DP̂ µ

Dτ
] + Y

dPµ
◦

dτ
. (2.50)

We introduced new gauge fields B◦ and Z whose transformation laws are

δHLB◦ = Tr(LZ), (2.51)

δHLZ = i[H,Z], (2.52)

δwB◦ =
1

e

dw

dτ
, δwZ = 0, (2.53)

δY B◦ = −Tr(Y B), (2.54)

δY Z =
1

e

dY

dτ
+ i[A,Y ] ≡ 1

e

DY

Dτ
, (2.55)

and scalings are

B◦ → λ2B◦, Z → λ−2Z. (2.56)
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Like other matrix gauge fields, the matrix gauge field Z is traceless by definition. It is also

to be kept in mind that both the conserved vectors Pµ
◦ and Xµ

M are completely inert under

all of gauge transformations.

The schematic structure of higher gauge symmetries is summarized in Fig. 1. The

non-dynamical matrix gauge fields are defined to be traceless and hence matrix-type Gauss

constraints are also traceless, the gauge structure of our model is essentially SU(N) rather

than U(N), though the gauge field B◦ behaves partially as the trace component associated

with the traceless matrix gauge field B. On the other hand, for dynamical coordinate

and momentum variables, the U(1) trace parts (or the center-of-mass parts) also play

indispensable roles. However, as Fig. 1 suggests, the separate treatment of them is essential

for the higher symmetries, especially δY , in realizing 11 dimensional covariance. The

importance of such a separation will later become more evident in the treatment of the

fermionic part and supersymmetries as we shall discuss in section 4.

Provided that derivative terms in the action appear only through the first-order gen-

eralized Poincaré integral

∫
dτ

[
PMµ

dXµ
M

dτ
+Tr

(
Pµ

DXµ

Dτ

)]
=

∫
dτ

[
PMµ

dXµ
M

dτ
+ P◦µ

DXµ
◦

Dτ
+Tr

(
P̂µ

DX̂µ

Dτ

)]

= −
∫

dτ
[DPMµ

Dτ
Xµ

M +
dP◦µ
dτ

Xµ
◦ +Tr

(DP̂µ

Dτ
X̂µ

)]
,

(2.57)

which is, with generalized covariant derivatives, now invariant under the whole set of gauge

transformations, the Gauss contraints are precisely (2.38) and (2.39), corresponding to the

gauge fields B◦ and Z, respectively, together with those associated with B and A.

Corresponding to the manifest Lorentz covariance of the canonical structure, the stan-

dard form of Lorentz generators

Mµν ≡ Xµ
MP ν

M −Xν
MPµ

M +Tr(XµP ν −XνP µ) (2.58)

are gauge invariant {Mµν , CHL+w+Y }P = 0 and satisfy the Lorentz algebra with respect

to the Poisson bracket.

ˆ
µ
X̂

µ + P̂
µ

1

N
P

µ

◦

µ
X

µ

◦

τ

[

PMµ

LX
µ

M

(

i[H

Tr

(

LP

Tr

(

LP

and Y

and Y

= wX = wX

Figure 1: Schematic structure of the higher gauge
symmetries: The different shapes of the objects in-
dicate different scaling dimensions of canonical vari-
ables. The directions of arrows indicate how the
variables are mixed into others (or into themselves)
by gauge transformations. The row in the middle
represents conserved vectors, while the top row rep-
resents the corresponding cyclic (passive) variables.
Although superficially the transformations are act-
ing symmetrically between the left and right sides
of this diagram, their roles are different.
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Lorentz generator 

It should be kept in mind that the laws of gauge transformation are different between

the coordinate-type and momentum-type variables. In particular, the transformation law

(2.21) ensures that the ordinary traces such as Tr(P µPµ) of products of purely momentum

variables are gauge invariant, as opposed to those involving the coordinate-type matrices.

For arbitrary functions O = O(XM,X, PM,P ) of the generalized coordinates and

momenta, the gauge transformation is expressed as a canonical transformation δHLO =

{O, CHL}P in terms of an infinitesimal generator defined as

CHL ≡ Tr
(
Pµ

(
i[H,Xµ] +LXµ

M

))
, (2.24)

making the invariance of canonical structure under the gauge transformations manifest. We

note that our canonical transformations are explicitly proper-time dependent through time-

dependent H and L. In the usual canonical formalism, such a time-dependent canonical

transformation changes the Hamiltonian by a shift

∂

∂τ
CHL ≡ Tr

(
Pµ

(
i
[dH
dτ

,Xµ
]
+

dL

dτ
Xµ

M

))
. (2.25)

In our generalized relativistically-invariant canonical formalism, this shift-type contribution

is cancelled by the transformations of gauge fields. This is reasonable since the Hamilto-

nian in our system is zero after all, giving the Hamiltonian constraint associated with

re-parametrization invariance with respect to τ .

Being associated with these transformation laws, the covariant derivatives of momen-

tum variables are

D′P µ

Dτ
≡ dP µ

dτ
+ ie[A,P µ], (2.26)

D′Pµ
M

Dτ
≡

dPµ
M

dτ
+ eTr(BP µ), (2.27)

satisfying

δHL

(D′P µ

Dτ

)
= i[H,

D′P µ

Dτ
], (2.28)

δHL

(D′Pµ
M

Dτ

)
= −Tr

(
L
D′P µ

Dτ

)
. (2.29)

It is important here to notice that these canonical structure and the associated co-

variant derivatives are invariant under a global (not as a local re-parametrization) scaling

transformation τ → λ2τ of the proper time, when the dynamical variables are transformed

as

Xµ → λXµ, Xµ
M → λ−3Xµ

M, (2.30)

P µ → λ−1P µ, Pµ
M → λ3Pµ

M, (2.31)

A → λ−2A, B → λ2B. (2.32)

Accordingly, the gauge functions must be scaled as

H → H, L → λ4L. (2.33)
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∂τ
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(
Pµ

(
i
[dH

dτ
, Xµ

]
+

dL

dτ
Xµ

M

))
. (2.25)

In contrast, in our generalized relativistically-invariant canonical formalism, this shifting
contribution is cancelled by the transformations of gauge fields. This is reasonable since the
Hamiltonian in our system is zero after all, due to the Hamiltonian constraint associated
with re-parametrization invariance with respect to τ .

Corresponding to these transformation laws, the covariant derivatives of momentum
variables are

D′P µ

Dτ
≡ dP µ

dτ
+ ie[A, P µ], (2.26)

D′Pµ
M

Dτ
≡

dPµ
M

dτ
+ eTr(B̂P µ), (2.27)

satisfying

δfg

(D′P µ

Dτ

)
= i[H,

D′P µ

Dτ
], (2.28)

δfg

(D′Pµ
M

Dτ

)
= −Tr

(
L

D′P µ

Dτ

)
. (2.29)

It is important here to notice that these canonical structure and the associated co-
variant derivatives are invariant under a global (not as a re-parametrization) scaling trans-
formation τ → λ2τ of the proper time, when the dynamical variables are transformed
as

Xµ → λXµ, Xµ
M → λ−3Xµ

M, (2.30)

P µ → λ−1P µ, Pµ
M → λ3Pµ

M, (2.31)

A → λ−2A, B̂ → λ2B̂. (2.32)

Accordingly, the gauge functions must be scaled as

H → H, L → λ4L. (2.33)

Note that the auxiliary variable e has zero-scaling dimension, i.e. e → e. We also remark
that this scaling symmetry is a disguise of the “generalized conformal symmetry” which
was motivated by the idea of a space-time uncertainty relation and advocated in ref. [14]
9 in exploring gauge/gravity correspondences in the cases of dilatonic D-branes and scale
non-invariant super Yang-Mills theories.

9The scaling transformation of ref. [14] is obtained if we redefine the proper time parameter edτ = ds by

s = 2Nx+/P+
◦ (see section 3) with P+

◦ = 2N/R11 = 2N/(gsℓs) and then trade off the scaling Xµ
M → λ−3Xµ

M

for gs → λ3gs such that the transformation of x+ become x+ → λ−1x+. As we will see later, we can identify

ℓ−3
11 =

p
X2

M = 1/(gsℓs).
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gauge symmetry for eliminating negative modes                    
associated with 11d Lorentz metric

2.4 Completion of higher gauge symmetries

One of the reasons why we need still higher gauge symmetries beyond δHL, which already

extended the usual SU(N) gauge symmetry δH , is that the unphysical gauge degrees of

freedom of phase-space pairs of vector-like variables must be at least two for each (traceless)

matrices in order to describe gravity, in analogy with string theory.10 This is necessary for

reproducing the light-front M(atrix) theory which is described by SO(9) vector matrices

and their super partners after an appropriate gauge-fixing. Possibility of such higher gauge

symmetries reveals itself by noticing the existence of two natural conservation laws. We

assume that the whole theory, being defined in the flat 11-dimensional Minkowski space-

time, is symmetric under two rigid translations, namely, the usual coordinate translation

Xµ
◦ → Xµ

◦ + cµ and, additionally, Pµ
M → Pµ

M + bµ in connection with the embedding of

10-dimensional string theory as emphasized already. As the equations of motion, we then

have conservation laws for Pµ
◦ and Xµ

M,

dPµ
◦

dτ
= 0,

dXµ
M

dτ
= 0. (2.37)

We can then consistently demand that Pµ
◦ is a time-like (or light-like as a limiting case)

vector and, simultaneously, Xµ
M is a space-like vector, and finally that they are orthogonal

to each other,

P◦ ·XM = 0. (2.38)

Here and in what follows we often denote the Minkowskian scalar products by the “·”
symbol and also use an abbreviation such as X2

M = XM ·XM. Now the above orthogonality

condition allows us to impose a condition on the matrix coordinates in a way that is

invariant under the gauge transformation δHLX̂µ,

P◦ · X̂ = 0, (2.39)

which enables us to eliminate the time components of the traceless part of coordinate

matrices.

Since these two constraints are of first-class, we can treat them as the Gauss constraints

associated with new gauge symmetries. Corresponding to (2.38) and (2.39), respectively,

the local gauge transformations which preserve the canonical structure are given as

δwX
µ
◦ = wXµ

M, δwP
µ
◦ = 0, δwX

µ
M = 0, δwP

µ
M = −wPµ

◦ , (2.40)

and

δY X̂
µ = 0, δY P̂

µ = Pµ
◦ Y , δY X

µ
◦ = −Tr(Y X̂µ), δY P

µ
◦ = 0, (2.41)

10Heuristically, the Gauss constraints associated with the gauge field B and a new one Z introduced below

will play analogous (in fact much stronger) roles as the non-zero-mode parts of the Virasoro constraints

P 2+(X ′)2 = 0 and P ·X ′ = 0, respectively, of string theory. The zero-mode part of the former Hamiltonian

constraint corresponds to our mass-shell constraint associated with ein-bein e.
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two further requirements of symmetries
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is valid inside the bracket with respect to our higher gauge transformation.
Therefore we have, remembering [A,B,C]M = [X,Y, Z]M = 0,

δHL[A,B,C] = i[H, [A,B,C]], δHL[X,Y, Z] = i[H, [X,Y, Z]],

which ensures

δHL⟨[A,B,C], [X,Y, Z]⟩ =⟨δHL[A,B,C], [X,Y, Z]⟩+ ⟨[A,B,C], δHL[X,Y, Z]⟩
=0.

This result indicates that, corresponding to the potential term
Tr[Xi,Xj ]2 in the light-front Matrix theory, we have a simple integral
invariant composed of the coordinate matrices

1

12

∫
dτ e ⟨[Xµ, Xν , Xσ][Xµ, Xν , Xσ]⟩

=
1

4

∫
dτ eTr

(
X2

M[Xν ,Xσ][Xν ,Xσ]− 2[XM ·X,Xν ][XM ·X,Xν ]
)

(33)

where by (·) we denote the usual Lorentz invariant scalar product, and
the symbol e = e(τ) is the ein-bein, transforming as a density (e(τ)dτ =
e′(τ ′)dτ ′) under arbitrary reparametrization of the time parameter τ .
Clearly, the above form of the potential term is contained in the first term
of this expression, if we are allowed to identify the Lorentz invariant X2

M

with the M-theory parameters appropriately. Later we will examine this
question and also whether other terms may be ignored in the physical space.

9. Lorentz-invariant canonical formalism of higher
symmetries with further extensions

We treat this dynamical system by a canonical formalism with respect
to a single Lorentz-invariant time parameter τ , and introduce momentum
variables, denoted by (Pµ

M,P µ), which are canonically conjugate in the
usual sense to the coordinate variables Xµ = (Xµ

M,Xµ). The canonical
Poisson brackets are thus

{Xµ
M, P ν

M}P = ηµν ,

{Xµ
ab, P

ν
cd}P = δadδbcη

µν ,

with all other Poisson brackets being zero (e.g. {Xµ
ab, P

ν
M}P = 0, etc). Note

that the appearance of the indefinite 11-dimensional Minkowkian metric
ηµν is due to our fundamental requirement of 11-dimensional Lorentz co-
variance.

It should be kept in mind that the laws of gauge transformation are different between

the coordinate-type and momentum-type variables. In particular, the transformation law

(2.21) ensures that the ordinary traces such as Tr(P µPµ) of products of purely momentum

variables are gauge invariant, as opposed to those involving the coordinate-type matrices.

For arbitrary functions O = O(XM,X, PM,P ) of the generalized coordinates and

momenta, the gauge transformation is expressed as a canonical transformation δHLO =

{O, CHL}P in terms of an infinitesimal generator defined as

CHL ≡ Tr
(
Pµ

(
i[H,Xµ] +LXµ

M

))
, (2.24)

making the invariance of canonical structure under the gauge transformations manifest. We

note that our canonical transformations are explicitly proper-time dependent through time-

dependent H and L. In the usual canonical formalism, such a time-dependent canonical

transformation changes the Hamiltonian by a shift

∂

∂τ
CHL ≡ Tr

(
Pµ

(
i
[dH
dτ

,Xµ
]
+

dL

dτ
Xµ

M

))
. (2.25)

In our generalized relativistically-invariant canonical formalism, this shift-type contribution

is cancelled by the transformations of gauge fields. This is reasonable since the Hamilto-

nian in our system is zero after all, giving the Hamiltonian constraint associated with

re-parametrization invariance with respect to τ .

Being associated with these transformation laws, the covariant derivatives of momen-

tum variables are

D′P µ

Dτ
≡ dP µ

dτ
+ ie[A,P µ], (2.26)

D′Pµ
M

Dτ
≡

dPµ
M

dτ
+ eTr(BP µ), (2.27)

satisfying

δHL

(D′P µ

Dτ

)
= i[H,

D′P µ

Dτ
], (2.28)

δHL

(D′Pµ
M

Dτ

)
= −Tr

(
L
D′P µ

Dτ

)
. (2.29)

It is important here to notice that these canonical structure and the associated co-

variant derivatives are invariant under a global (not as a local re-parametrization) scaling

transformation τ → λ2τ of the proper time, when the dynamical variables are transformed

as

Xµ → λXµ, Xµ
M → λ−3Xµ

M, (2.30)

P µ → λ−1P µ, Pµ
M → λ3Pµ

M, (2.31)

A → λ−2A, B → λ2B. (2.32)

Accordingly, the gauge functions must be scaled as

H → H, L → λ4L. (2.33)
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Schematic structure of  higher gauge symmetries

Like other matrix gauge fields, the matrix gauge field Z is traceless by definition. It is also

to be kept in mind that both the conserved vectors Pµ
◦ and Xµ

M are completely inert under

all of gauge transformations.

The schematic structure of higher gauge symmetries are summarized in Fig. 1. The

non-dynamical matrix gauge fields are defined to be traceless and hence matrix-type Gauss

constraints are also traceless, the gauge structure of our model is essentially SU(N) rather

than U(N), though the gauge field B◦ behaves partially as the trace component associated

with the traceless matrix gauge field B. On the other hand, for dynamical coordinate

and momentum variables, the U(1) trace parts (or the center-of-mass parts) also play

indispensable roles. However, as Fig. 1 suggests, the separate treatment of them is essential

for the higher symmetries, especially δY , in realizing 11 dimensional covariance. The

importance of such a separation will later become evident in the treatment of the fermionic

part as we shall discuss in section 4.

Provided that derivative terms in the action appear only through the first-order gen-

eralized Poincaré integral

∫
dτ

[
PMµ

dXµ
M

dτ
+Tr

(
Pµ

DXµ

Dτ

)]
=

∫
dτ

[
PMµ

dXµ
M

dτ
+ P◦µ

DXµ
◦

Dτ
+Tr

(
P̂µ

DX̂µ

Dτ

)]

(2.57)

= −
∫

dτ
[DPMµ

Dτ
Xµ

M +
dP◦µ
dτ

Xµ
◦ +Tr

(DP̂µ

Dτ
X̂µ

)]
,

which is, with generalized covariant derivatives, now invariant under the whole set of gauge

transformations, the Gauss contraints are precisely (2.38) and (2.39), corresponding to the

gauge fields B◦ and Z, respectively, together with those associated with B and A.

Corresponding to the manifest Lorentz covariance of the canonical structure, the stan-

dard form of Lorentz generators

Mµν ≡ Xµ
MP ν

M −Xν
MPµ

M +Tr(XµP ν −XνP µ) (2.58)

are gauge invariant {Mµν , CHL+w+Y }P = 0 and satisfy the Lorentz algebra with respect

to the Poisson bracket.

ˆ
µ
X̂

µ + P̂
µ

1

N
P

µ

◦

µ
X

µ

◦

τ

[

PMµ

LX
µ

M

(

i[H

Tr

(

LP

Tr

(

LP

and Y

and Y

= wX = wX

Figure 1: Schematic structure of the higher gauge
symmetries: The different shapes of the objects in-
dicate different scaling dimensions of canonical vari-
ables. The directions of arrows indicate how the
variables are mixed into others (or into themselves)
by gauge transformations. The row in the middle
represents conserved vectors, while the top row rep-
resents the corresponding cyclic (passive) variables.
Although superficially the transformations are act-
ing symmetrically between the left and right sides
of this diagram, their roles are different.
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symmetry :
∫

dτ
[
PMµ

dXµ
M

dτ
+Tr

(
P µ

DXµ

Dτ

)]

=

∫
dτ

[
PMµ

dXµ
M

dτ
+ P◦µ

DXµ
◦

Dτ
+Tr

(
P̂ µ

DX̂
µ

Dτ

)]
(42)

= −
∫

dτ
[DPMµ

Dτ
Xµ

M +
dP◦µ

dτ
Xµ

◦ +Tr
(DP̂ µ

Dτ
X̂

µ
)]

,

where in the second line we have separated the center-of-mass part, and in
the third have made partial integration. Note that though we are consid-
ering local τ -dependent canonical transformations as higher gauge trans-
formations, the generalized Poincaré integral is invariant (up to surface
terms) because of the presence of gauge field. This is in contrast to the
usual canonical formalism in which a time dependent canonical transfor-
mation in general induces a shift of Hamiltonian by the time derivative of
corresponding infinitesimal generator. In our case, this shift is now com-
pensated for by the transformations of gauge fields.

We require that the τ -derivatives of dynamical variables appear only
through this invariant, as it should be in any standard canonical (first-
order) formalism. Hence, the same can be said about gauge fields. This
means that we have already fixed the forms of bosonic parts of all Gaussian
constraints in our system. By taking infinitesimal variations of the gauge
fields, we obtain four independent constaints,

δA : [P µ,X
µ] + · · · ≈ 0, (43)

δB : P̂ µX
µ
M ≈ 0, (44)

δZ : X̂µP
µ
◦ ≈ 0, (45)

δB : P◦µX
µ
M ≈ 0, (46)

where only the first one has a contribution, denoted by ellipsis, from
fermionic part which we will fix later after discussing supersymmetry. All
these constraints are regarded as “weak equations” before gauge fixing: it
is easy to check that the algebra of these constraints close by themselves,
which are therefore of first-class. Note that the matrix constraints (43)∼
(45) are all traceless, due to the fact that all matrix gauge fields are trace-
less. It should also be noted that if we take into account the equation
(39) as a constraint, it should be treated as a second-class constraint, re-
flecting again that it is a sort of gauge-fixing condition for the Y -gauge
transformations, similarly as in the case of massive abelian gauge field.
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where

Mµν ≡ Xµ
MP ν

M −Xν
MPµ

M +Tr(XµP ν −XνP µ) (41)

are the generators of Lorentz transformations, satisfying the correct Lorentz
algebra under the Poisson-bracket algebras from which we have started our
canonical formulation.

Taking into account these extensions of higher-gauge symmetries, we
can now present the final form of covariant derivatives. The new additional
gauge fields are denoted by Z and B corresponding to δY and δw transfor-
mations, respectively, the former of which is again traceless by definition.

DXµ
◦

Dτ
=

dXµ
◦

dτ
− eBXµ

M + eTr(ZX̂
µ
),

DX̂
µ

Dτ
=

dX̂
µ

dτ
+ ie[A,Xµ]− eBXµ

M,

DPµ
M

Dτ
=

dPµ
M

dτ
+ eTr

(
(B +B)P µ),

DP̂
µ

Dτ
=

dP̂
µ

dτ
+ ie[A,P µ]− eZPµ

◦ .

The transformation laws of the new gauge fields are

δHLB = Tr(LZ),

δHLZ = i[H,Z],

δwB =
1

e

dw

dτ
, δwZ = 0,

δY B = −Tr(Y B̂),

δY Z =
1

e

dY

dτ
+ i[A,Y ] ≡ 1

e

DY

Dτ
.

The scaling transformation of newly introduced gauge fields and transfor-
mation parameters are

B → λ2B, Z → λ−2Z, w → λ4w, Y → Y .

Now that we have succeeded to construct a canonical formalism of higher
symmetry, there is a basic canonical gauge invariant, namely, the general-
ized Poincaré integral, involving first derivatives and satisfying the scaling

contributions from  
gauge fields

Covariant derivatives and 
generalized (             ) integral invariant: 
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symmetry :
∫

dτ
[
PMµ

dXµ
M

dτ
+Tr

(
P µ

DXµ

Dτ

)]

=

∫
dτ

[
PMµ

dXµ
M

dτ
+ P◦µ

DXµ
◦

Dτ
+Tr

(
P̂ µ

DX̂
µ

Dτ

)]
(42)

= −
∫

dτ
[DPMµ

Dτ
Xµ

M +
dP◦µ

dτ
Xµ

◦ +Tr
(DP̂ µ

Dτ
X̂

µ
)]

,

where in the second line we have separated the center-of-mass part, and in
the third have made partial integration. Note that though we are consid-
ering local τ -dependent canonical transformations as higher gauge trans-
formations, the generalized Poincaré integral is invariant (up to surface
terms) because of the presence of gauge field. This is in contrast to the
usual canonical formalism in which a time dependent canonical transfor-
mation in general induces a shift of Hamiltonian by the time derivative of
corresponding infinitesimal generator. In our case, this shift is now com-
pensated for by the transformations of gauge fields.

We require that the τ -derivatives of dynamical variables appear only
through this invariant, as it should be in any standard canonical (first-
order) formalism. Hence, the same can be said about gauge fields. This
means that we have already fixed the forms of bosonic parts of all Gaussian
constraints in our system. By taking infinitesimal variations of the gauge
fields, we obtain four independent constaints,

δA : [P µ,X
µ] + · · · ≈ 0, (43)

δB : P̂ µX
µ
M ≈ 0, (44)

δZ : X̂µP
µ
◦ ≈ 0, (45)

δB : P◦µX
µ
M ≈ 0, (46)

where only the first one has a contribution, denoted by ellipsis, from
fermionic part which we will fix later after discussing supersymmetry. All
these constraints are regarded as “weak equations” before gauge fixing: it
is easy to check that the algebra of these constraints close by themselves,
which are therefore of first-class. Note that the matrix constraints (43)∼
(45) are all traceless, due to the fact that all matrix gauge fields are trace-
less. It should also be noted that if we take into account the equation
(39) as a constraint, it should be treated as a second-class constraint, re-
flecting again that it is a sort of gauge-fixing condition for the Y -gauge
transformations, similarly as in the case of massive abelian gauge field.

symplectic structure  
such that it is invariant under  

generalized (and finitely discretized) Nambu transformations. 



 11d covariant action of Matrix theory



Lorentz invariant action (bosonic part)

December 3, 2016 16:22 WSPC Proceedings - 9in x 6in tohokulecture2016 page 30

30

We will shortly see that the conserved auxiliary vector Xµ
M plays a

fundamental role of fixing M-theory scales as reviewed in the first part of
this lecture. It also plays a crucial role in realizing supersymmetry in a
most economical manner in our covariant formulation of Matrix theory.

10. The action of covariantized Matrix theory: bosonic part

Now we are in a position to write down the (bosonic part of the) action of
our covariant Matrix theory:

Aboson =
∫

dτ
[
P◦ ·

DX◦
Dτ

+ PM · dXM

dτ
+ Tr

(
P̂ · DX̂

Dτ

)

− e

2N
P 2
◦ − e

2
Tr(P̂ − P◦K)2 +

e

12
〈
[Xµ, Xν , Xσ][Xµ, Xν , Xσ]

〉]
.

(47)

The relative normalization between the kinetic momentum part and the
last potential term is actually arbitrary, since it can be freely changed by
redefinitions, (XM, PM) → (ρXµ

M, ρ−1Pµ
M), (B, B) → ρ−1(B, B), keeping

other terms intact. This form of the bosonic action is characterized by the
following four kinds of symmetries.

(1) Local reparametrization invariance with respect to τ .
(2) Global translation invariance with respect to Xµ

◦ → Xµ
◦ +cµ and Pµ

M →
Pµ

M + bµ.
(3) Global scaling symmetry (37) under τ → λ2τ .
(4) Gauge symmetries under δH + δL + δY + δw.

The local symmetries (1) and (4) give constraints. The Gauss constraints
corresponding to the latter are already explicated in the previous section.
The mass-shell condition corresponding to (1) is

P 2
◦ + M2

boson ≈ 0 (48)

with the effective squared-mass

M2
boson = NTr(P̂ − P◦K)2 − N

6
〈
[Xµ, Xν , Xσ][Xµ, Xν , Xσ]

〉
, (49)

where the equality is valid only in conjunction with the Gauss-law con-
straints (43)∼(46). This is indicated by the symbol ≈: remember that,
when a variation of the ein-bein e(τ) is made, there are contributions from
the covariant derivatives, involved in the generalized Poincaré invariant,
which are linear with respect to all the gauge fields and consequently are
linear combinations of the Gauss constraints. It is to be noted that in the
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hence we cannot define these transformation δH + δL and δH + δY as two
independent transformations, unless we separate the δH part. These two
sets of gauge symmetries are somewhat analogous to the presence of holo-
morphic and anti-holomorphic parts of conformal symmetries in (closed)
string theory.

Here no attentive reader can fail to notice that the previous form of
the integral invariant (36) for momentum obviously violates the symmetry
under (38). This is easily remedied by a modification with the replacement
P̂

µ
→ P̂

µ
− (P 2

◦ )−1Pµ
◦ (P̂ · P◦). More appropriately, we can introduce an

additional auxiliary (traceless) matrix variable K, transforming as

δY K = Y

and rewrite an integral invariant as
∫

dτ e Tr(P − P◦K)2 =
∫

dτ e
( 1

N
P 2
◦ + Tr(P̂ − P◦K)2

)

The variation with respect to K gives

P◦ · (P̂ − P◦K) = 0. (39)

We may gauge-fix the Y -transformation by choosing a condition, say, K =
0, which would lead to a constraint

P◦ · P̂ = 0,

which serves to eliminate explicitly the time-like component of the traceless
part of the matrix momentum. The reader might recall that the situation
is similar to the Higgs mechanism in formulating abelian massive vector
gauge field covariantly.

In terms of the infinitesimal canonical generator extending (35), our
postulate for higher symmetries now amounts to

Cw+Y +H+L = wP◦ · XM + Tr
(
−(P◦ · X)Y + iP µ[H, Xµ] + (XM · P )L

)
.

where the decomposition w + Y + H + L on the l.h.side should be obvi-
ous from the corresponding order of the transformation parameters on the
r.h.side. Here, we have included also the first term, w-transformation with
an arbitrary functions w = w(τ), given by

δwXµ
◦ = wXM, δwPµ

M = −wPµ
◦

which enable one to shift the time-like component of Pµ
M arbitrarily.

additional (auxiliary)                     variable
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We may gauge-fix the Y -transformation by choosing a condition, say, K =
0, which would lead to a constraint

P◦ · P̂ = 0,

which serves to eliminate explicitly the time-like component of the traceless
part of matrix momentum. The reader might recall that the situation is
similar to the Higgs mechanism (or Stückelberg formalism) in formulating
abelian massive vector gauge field covariantly.

In terms of the infinitesimal canonical generator extending (35), our
postulate for higher symmetries now amounts to

Cw+Y+H+L = wP◦ ·XM +Tr
(
−(P◦ ·X)Y + iP µ[H,Xµ] + (XM · P )L

)
.

where the decomposition w + Y + H + L on the l.h.side should be ob-
vious from the corresponding order of transformation parameters on the
r.h.side. Here, we have included also the first term, w-transformation with
an arbitrary functions w = w(τ), given by

δwX
µ
◦ = wXM, δwP

µ
M = −wPµ

◦

which enable one to shift the time-like component of Pµ
M arbitrarily.

The Lorentz invariance of the present canonical formalism for these
symmetries is ensured by

{Mµν , Cw+Y+H+L} = 0, (40)
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We will shortly see that the conserved auxiliary vector Xµ
M plays a

fundamental role of fixing M-theory scales as reviewed in the first part of
this lecture. It also plays a crucial role in realizing supersymmetry in a
most economical manner in our covariant formulation of Matrix theory.

10. The action of covariantized Matrix theory: bosonic part

Now we are in a position to write down the (bosonic part of the) action of
our covariant Matrix theory:

Aboson =
∫

dτ
[
P◦ ·

DX◦
Dτ

+ PM · dXM

dτ
+ Tr

(
P̂ · DX̂

Dτ

)

− e

2N
P 2
◦ − e

2
Tr(P̂ − P◦K)2 +

e

12
〈
[Xµ, Xν , Xσ][Xµ, Xν , Xσ]

〉]
.

(47)

The relative normalization between the kinetic momentum part and the
last potential term is actually arbitrary, since it can be freely changed by
redefinitions, (XM, PM) → (ρXµ

M, ρ−1Pµ
M), (B, B) → ρ−1(B, B), keeping

other terms intact. This form of the bosonic action is characterized by the
following four kinds of symmetries.

(1) Local reparametrization invariance with respect to τ .
(2) Global translation invariance with respect to Xµ

◦ → Xµ
◦ +cµ and Pµ

M →
Pµ

M + bµ.
(3) Global scaling symmetry (37) under τ → λ2τ .
(4) Gauge symmetries under δH + δL + δY + δw.

The local symmetries (1) and (4) give constraints. The Gauss constraints
corresponding to the latter are already explicated in the previous section.
The mass-shell condition corresponding to (1) is

P 2
◦ + M2

boson ≈ 0 (48)

with the effective squared-mass

M2
boson = NTr(P̂ − P◦K)2 − N

6
〈
[Xµ, Xν , Xσ][Xµ, Xν , Xσ]

〉
, (49)

where the equality is valid only in conjunction with the Gauss-law con-
straints (43)∼(46). This is indicated by the symbol ≈: remember that,
when a variation of the ein-bein e(τ) is made, there are contributions from
the covariant derivatives, involved in the generalized Poincaré invariant,
which are linear with respect to all the gauge fields and consequently are
linear combinations of the Gauss constraints. It is to be noted that in the
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Since we are supposing a flat 11 dimensional Minkowskian spacetimes,
we require translation invariance under Xµ

◦ → Xµ
◦ + cµ with an arbitrary

constant vector cµ. Thus we have conservation of total momentum

dPµ
◦

dτ
= 0.

As an additional condition, we demand that the system has also a trans-
lation symmetry with respect to a shift of the auxiliary momentum Pµ

M,
Pµ
M → Pµ

M + bµ with an arbitrary constant vector bµ, thereby Xµ
M being

also conserved,

dXµ
M

dτ
= 0.

Both these symmetries are satisfied by all integral invariants discussed so
far.

− P
µ
◦

δℓX
µ

M
= 0

Fig. 3. M

-plane spanned by Pµ
◦

and Xµ
M

The conserved center-of-mass momentum Pµ
◦

must be time-like (including a possible special case
of light-like limit), P 2

◦ < 0. Due to the Gauss con-
straint (46), this implies that Xµ

M is a (conserved)
space-like vector. Thus given an initial condition,
we are automatically specifying a conserved two-
dimensional plane spanned by Pµ

◦ and Xµ
M in the

Minkowski spacetime. In the following, we call
this plane “M-plane” for convenience. In fixing the
gauge for higher symmetries, the M-plane will play
a preferential role, in the sense that there are no
local physical degrees of freedom living solely on
the M-plane. The emergence of preferential frame
is essentially the same as in any Lorentz covariant
formulation of particles in configuration space: re-
call that, given any state in a many-body system,
we have a particular preferential frame, namely, the center-of-mass frame,
where all of the spatial components of Pµ

◦ vanish. Namely, the preferential
frames appear whenever we consider a particular state of particles, which
specifies a particular configuration of particles. Only difference in our case
is that there are two vectors, one time-like and the other space-like, instead
of one time-like vector in cases of the usual many-body systems. Covari-
ance in the configuration space of particles is guaranteed by the existence
of generators of Lorentz transformation which operate in the space of states
and satisfy the correct Lorentz algebra.
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We will shortly see that the conserved auxiliary vector Xµ
M plays a

fundamental role of fixing M-theory scales as reviewed in the first part of
this lecture. It also plays a crucial role in realizing supersymmetry in a
most economical manner in our covariant formulation of Matrix theory.
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Now we are in a position to write down the (bosonic part of the) action of
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〈
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M, ρ−1Pµ
M), (B,B) → ρ−1(B,B), keeping

other terms intact. This form of the bosonic action is characterized by the
following four kinds of symmetries.

(1) Local reparametrization invariance with respect to τ .
(2) Global translation invariance with respect to Xµ
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◦ +cµ and Pµ

M →
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(3) Global scaling symmetry (37) under τ → λ2τ .
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The local symmetries (1) and (4) give constraints. The Gauss constraints
corresponding to the latter are already explicated in the previous section.
The mass-shell condition corresponding to (1) is

P 2
◦ +M2

boson ≈ 0 (48)

with the effective squared-mass

M2
boson = NTr(P̂ − P◦K)2 − N

6

〈
[Xµ, Xν , Xσ][Xµ, Xν , Xσ]

〉
, (49)

where the equality is valid only in conjunction with the Gauss-law con-
straints (43)∼(46). This is indicated by the symbol ≈: remember that,
when a variation of the ein-bein e(τ) is made, there are contributions from
the covariant derivatives, involved in the generalized Poincaré invariant,
which are linear with respect to all the gauge fields and consequently are
linear combinations of the Gauss constraints. It is to be noted that in the

Or, if you like, we can set  
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sets of gauge symmetries are somewhat analogous to the presence of holo-
morphic and anti-holomorphic parts of conformal symmetries in (closed)
string theory.

Here no attentive reader can fail to notice that the previous form of
the integral invariant (36) for momentum obviously violates the symmetry
under (38). This is easily remedied by a modification with replacement
P̂

µ

! P̂
µ

� (P 2
� )

�1Pµ

� (P̂ · P�). More appropriately, we can introduce an
additional auxiliary (traceless) matrix variable K, transforming as

�Y K = Y

and rewrite an integral invariant as
Z

d⌧ eTr(P � P�K)2 =

Z
d⌧ e

⇣ 1

N
P 2
� +Tr(P̂ � P�K)2

⌘

The variation with respect to K gives

P� · (P̂ � P�K) = 0. (39)

If we solve this equation at the beginning, we obtain K = (P 2
� )

�1
P̂ ·P�. We

may gauge-fix the Y -transformation by choosing a condition, say, K = 0,
which would lead to a constraint

P� · P̂ = 0,

which serves to eliminate explicitly the time-like component of the traceless
part of matrix momentum. The reader might recall that the situation is
similar to the Higgs mechanism (or Stückelberg formalism) in formulating
abelian massive vector gauge field covariantly.

In terms of the infinitesimal canonical generator extending (35), our
postulate for higher symmetries now amounts to

Cw+Y+H+L = wP� ·XM +Tr
⇣
�(P� ·X)Y + iP µ[H,Xµ] + (XM · P )L

⌘
.

where the decomposition w + Y + H + L on the l.h.side should be ob-
vious from the corresponding order of transformation parameters on the
r.h.side. Here, we have included also the first term, w-transformation with
an arbitrary functions w = w(⌧), given by

�wX
µ

� = wXM, �wP
µ

M = �wPµ

�

which enable one to shift the time-like component of Pµ

M arbitrarily.
The Lorentz invariance of the present canonical formalism for these

symmetries is ensured by

{Mµ⌫ , Cw+Y+H+L} = 0, (40)
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We will shortly see that the conserved auxiliary vector Xµ
M plays a

fundamental role of fixing M-theory scales as reviewed in the first part of
this lecture. It also plays a crucial role in realizing supersymmetry in a
most economical manner in our covariant formulation of Matrix theory.

10. The action of covariantized Matrix theory: bosonic part

Now we are in a position to write down the (bosonic part of the) action of
our covariant Matrix theory:

Aboson =
∫

dτ
[
P◦ ·

DX◦
Dτ

+ PM · dXM

dτ
+ Tr

(
P̂ · DX̂

Dτ

)

− e

2N
P 2
◦ − e

2
Tr(P̂ − P◦K)2 +

e

12
〈
[Xµ, Xν , Xσ][Xµ, Xν , Xσ]

〉]
.

(47)

The relative normalization between the kinetic momentum part and the
last potential term is actually arbitrary, since it can be freely changed by
redefinitions, (XM, PM) → (ρXµ

M, ρ−1Pµ
M), (B, B) → ρ−1(B, B), keeping

other terms intact. This form of the bosonic action is characterized by the
following four kinds of symmetries.

(1) Local reparametrization invariance with respect to τ .
(2) Global translation invariance with respect to Xµ

◦ → Xµ
◦ +cµ and Pµ

M →
Pµ

M + bµ.
(3) Global scaling symmetry (37) under τ → λ2τ .
(4) Gauge symmetries under δH + δL + δY + δw.

The local symmetries (1) and (4) give constraints. The Gauss constraints
corresponding to the latter are already explicated in the previous section.
The mass-shell condition corresponding to (1) is

P 2
◦ + M2

boson ≈ 0 (48)

with the effective squared-mass

M2
boson = NTr(P̂ − P◦K)2 − N

6
〈
[Xµ, Xν , Xσ][Xµ, Xν , Xσ]

〉
, (49)

where the equality is valid only in conjunction with the Gauss-law con-
straints (43)∼(46). This is indicated by the symbol ≈: remember that,
when a variation of the ein-bein e(τ) is made, there are contributions from
the covariant derivatives, involved in the generalized Poincaré invariant,
which are linear with respect to all the gauge fields and consequently are
linear combinations of the Gauss constraints. It is to be noted that in the
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where the equality is valid only in conjunction with the Gauss-law con-
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when a variation of the ein-bein e(τ) is made, there are contributions from
the covariant derivatives, involved in the generalized Poincaré invariant,
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It should be kept in mind that the laws of gauge transformation are different between

the coordinate-type and momentum-type variables. In particular, the transformation law

(2.21) ensures that the ordinary traces such as Tr(P µPµ) of products of purely momentum

variables are gauge invariant, as opposed to those involving the coordinate-type matrices.

For arbitrary functions O = O(XM,X, PM,P ) of the generalized coordinates and

momenta, the gauge transformation is expressed as a canonical transformation δHLO =

{O, CHL}P in terms of an infinitesimal generator defined as

CHL ≡ Tr
(
Pµ

(
i[H,Xµ] +LXµ

M

))
, (2.24)

making the invariance of canonical structure under the gauge transformations manifest. We

note that our canonical transformations are explicitly proper-time dependent through time-

dependent H and L. In the usual canonical formalism, such a time-dependent canonical

transformation changes the Hamiltonian by a shift

∂

∂τ
CHL ≡ Tr

(
Pµ

(
i
[dH
dτ

,Xµ
]
+

dL

dτ
Xµ

M

))
. (2.25)

In our generalized relativistically-invariant canonical formalism, this shift-type contribution

is cancelled by the transformations of gauge fields. This is reasonable since the Hamilto-

nian in our system is zero after all, giving the Hamiltonian constraint associated with

re-parametrization invariance with respect to τ .

Being associated with these transformation laws, the covariant derivatives of momen-

tum variables are

D′P µ

Dτ
≡ dP µ

dτ
+ ie[A,P µ], (2.26)

D′Pµ
M

Dτ
≡

dPµ
M

dτ
+ eTr(BP µ), (2.27)

satisfying

δHL

(D′P µ

Dτ

)
= i[H,

D′P µ

Dτ
], (2.28)

δHL

(D′Pµ
M

Dτ

)
= −Tr

(
L
D′P µ

Dτ

)
. (2.29)

It is important here to notice that these canonical structure and the associated co-

variant derivatives are invariant under a global (not as a local re-parametrization) scaling

transformation τ → λ2τ of the proper time, when the dynamical variables are transformed

as

Xµ → λXµ, Xµ
M → λ−3Xµ

M, (2.30)

P µ → λ−1P µ, Pµ
M → λ3Pµ

M, (2.31)

A → λ−2A, B → λ2B. (2.32)

Accordingly, the gauge functions must be scaled as

H → H, L → λ4L. (2.33)
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Mass-shell condition and Gauss constraints:
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We will shortly see that the conserved auxiliary vector Xµ
M plays a

fundamental role of fixing M-theory scales as reviewed in the first part of
this lecture. It also plays a crucial role in realizing supersymmetry in a
most economical manner in our covariant formulation of Matrix theory.

10. The action of covariantized Matrix theory: bosonic part

Now we are in a position to write down the (bosonic part of the) action of
our covariant Matrix theory:

Aboson =
∫

dτ
[
P◦ ·

DX◦
Dτ

+ PM · dXM

dτ
+ Tr

(
P̂ · DX̂

Dτ

)

− e

2N
P 2
◦ − e

2
Tr(P̂ − P◦K)2 +

e

12
〈
[Xµ, Xν , Xσ][Xµ, Xν , Xσ]

〉]
.

(47)

The relative normalization between the kinetic momentum part and the
last potential term is actually arbitrary, since it can be freely changed by
redefinitions, (XM, PM) → (ρXµ

M, ρ−1Pµ
M), (B, B) → ρ−1(B, B), keeping

other terms intact. This form of the bosonic action is characterized by the
following four kinds of symmetries.

(1) Local reparametrization invariance with respect to τ .
(2) Global translation invariance with respect to Xµ

◦ → Xµ
◦ +cµ and Pµ

M →
Pµ

M + bµ.
(3) Global scaling symmetry (37) under τ → λ2τ .
(4) Gauge symmetries under δH + δL + δY + δw.

The local symmetries (1) and (4) give constraints. The Gauss constraints
corresponding to the latter are already explicated in the previous section.
The mass-shell condition corresponding to (1) is

P 2
◦ + M2

boson ≈ 0 (48)

with the effective squared-mass

M2
boson = NTr(P̂ − P◦K)2 − N

6
〈
[Xµ, Xν , Xσ][Xµ, Xν , Xσ]

〉
, (49)

where the equality is valid only in conjunction with the Gauss-law con-
straints (43)∼(46). This is indicated by the symbol ≈: remember that,
when a variation of the ein-bein e(τ) is made, there are contributions from
the covariant derivatives, involved in the generalized Poincaré invariant,
which are linear with respect to all the gauge fields and consequently are
linear combinations of the Gauss constraints. It is to be noted that in the
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6
〈
[Xµ, Xν , Xσ][Xµ, Xν , Xσ]

〉
, (49)

where the equality is valid only in conjunction with the Gauss-law con-
straints (43)∼(46). This is indicated by the symbol ≈: remember that,
when a variation of the ein-bein e(τ) is made, there are contributions from
the covariant derivatives, involved in the generalized Poincaré invariant,
which are linear with respect to all the gauge fields and consequently are
linear combinations of the Gauss constraints. It is to be noted that in the

einbein

Gauss constraints (satisfying a closed algebra)

time-like space-like

The standard kinetic term without K is obtained by adopting K = 0 as the gauge condi-
tion. Since the equation of motion for K is

P◦ · (P̂ − P◦K) = 0, (3.4)

this gauge choice is actually equivalent to the following choice of gauge condition

P◦ · P̂ = 0, (3.5)

which renders the Gauss constraint (2.39) to a second-class constraint.
Putting together all the ingredients, the final form of bosonic action is

Aboson =
∫

dτ
[
P◦ ·

DX◦
Dτ

+ PM · dXM

dτ
+ Tr

(
P̂ · DX̂

Dτ

)

− e

2N
P 2
◦ − e

2
Tr(P̂ − P◦K)2 +

e

12
〈
[Xµ, Xν , Xσ][Xµ, Xν , Xσ]

〉]
. (3.6)

The variation by e gives the mass-shell constraint for the center-of-mass momentum

P 2
◦ + M2

boson ≃ 0, (3.7)

with the effective invariant mass square M2
boson being given by

M2
boson = NTr(P̂ − P◦K)2 − N

6
〈
[Xµ, Xν , Xσ][Xµ, Xν , Xσ]

〉
(3.8)

which involves only the traceless matrices and is positive semi-definite on-shell with P̂ µ −
Pµ
◦ K = 1

e
DX̂µ

Dτ under the constraints (2.38) and (2.39), since the time component of the
traceless matrices are eliminated by these constraints. By the symbol ≃ in (3.7), we indicate
that the equality is valid in conjunction with the Gauss-law constraints,

[Pµ, Xµ] = 0, (3.9)

P̂ · XM = 0, (3.10)

associated with the gauge fields A and B̂, respectively, together with (2.38) and (2.39).
In order to see whether the above bosonic action has desirable properties as a covari-

antized version of Matrix theory, we now check some expected features.

(1) Consistency of the Gauss constraints with the equations of motion
As a first exercise, let us see briefly how these Gauss constraints (3.9) and (3.10) are

consistent with the equations of motion,

DP̂µ

Dτ
= eP◦µZ − 1

2
∂

∂X̂µ
M2

boson. (3.11)

The δfg-gauge invariance of the potential is equivalent with the following identities.

XM µ
∂

∂Xµ
M2

boson = 0, (3.12)

[Xµ,
∂

∂Xµ
M2

boson] = 0. (3.13)
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transforming as

(δfg + δℓ + δy)
(DXµ

◦
Dτ

)
= L

dXµ
M

dτ
− Tr

(
Y

DX̂µ

Dτ

)
, (2.47)

(δfg + δℓ + δy)
(DX̂µ

Dτ

)
= i[H,

DX̂µ

Dτ
] + L

dXµ
M

dτ
(2.48)

(δfg + δℓ + δy)
(DPµ

M

Dτ

)
= −Tr

(
L

DP µ

Dτ

)
− L

dPµ
◦

dτ
, (2.49)

(δfg + δℓ + δy)
(DP̂ µ

Dτ

)
= i[H,

DP̂ µ

Dτ
] + Y

dPµ
◦

dτ
. (2.50)

We introduced new gauge fields B◦ and Z whose transformation laws are

δfgB◦ = Tr(LZ), (2.51)

δfgZ = i[H, Z], (2.52)

δℓB◦ =
1
e

dL

dτ
, δℓZ = 0, (2.53)

δyB◦ = −Tr(Y B̂), (2.54)

δyZ =
1
e

dY

dτ
+ i[A, Y ] ≡ 1

e

DY

Dτ
, (2.55)

and scalings are

B◦ → λ2B◦, Z → λ−2Z. (2.56)

The matrix gauge field Z is traceless by definition. From these expressions, one can now
see the reason why we reserved the symbol B: the new gauge fields B◦ can be regarded as
the trace component associated with the previous traceless gauge field B̂:

B ≡ B◦ + B̂. (2.57)

It is to be kept in mind that the conserved vectors Pµ
◦ and Xµ

M are both completely inert
under all of gauge transformations.

Provided that derivative terms in the action appear only through the first-order Poincaré
integral

∫
dτ

[
PM µ

dXµ
M

dτ
+ Tr

(
Pµ

DXµ

Dτ

)]
=

∫
dτ

[
PM µ

dXµ
M

dτ
+ P◦µ

DXµ
◦

Dτ
+ Tr

(
P̂µ

DX̂µ

Dτ

)]

(2.58)

= −
∫

dτ
[DPM µ

Dτ
Xµ

M +
dP◦µ

dτ
Xµ

◦ + Tr
(DP̂µ

Dτ
X̂µ

)]
,

which is, with generalized covariant derivatives, now invariant under the whole set of gauge
transformations, the Gauss contraints are precisely (2.38) and (2.39), corresponding to the
gauge fields B◦ and Z, respectively, together with those associated with B̂ and A.
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2.2 Coordinate-type variables

Now we extend a higher gauge symmetry exhibited in the previous subsection within the

framework of ordinary canonical formalism. To represent the dynamical degrees of freedom

in space-time, we endow them with (11 dimensional) space-time Lorentz indices µ, ν,σ, · · · .
The generalized coordinate vectors of D-particles are symbolized as Xµ = (Xµ

M,Xµ) by

following the above convention. Their gauge transformations are

δHLX
µ
M = 0, δHLX

µ = i[H,Xµ] +LXµ
M, (2.11)

with H and L being traceless and scalar matrices. Thus we have a typical invariant

⟨[Xµ, Xν , Xσ], [Xµ, Xν , Xσ]⟩ involving the coordinate-type variables. The center-of-mass

coordinate vector of N partons is Xµ
◦ which can be defined independently of N and desig-

nated with a special subscript ◦ as

Xµ
◦ ≡ 1

N
Tr(Xµ), Xµ = Xµ

◦ + X̂µ, Tr(X̂µ) = 0 (2.12)

with X̂µ being the traceless part. We will suppress the superscript ˆ for matrices which

are defined to be traceless from the beginning, unless otherwise stated.

Since these dynamical variables in general are functions of the proper-time parameter

τ , we need to define covariant derivatives in order to have gauge-invariant kinetic terms.

From the matrix form (2.3), we are led to introduce two kinds of traceless matrix fields as

gauge fields, each corresponding to H and L, which we denote by A and B, respectively.

Then, the covariant derivative is defined as

D′Xµ

Dτ
=

(dXµ
M

dτ
,
D′Xµ

Dτ

)
, (2.13)

D′Xµ

Dτ
=

dXµ

dτ
+ ie[A,Xµ]− eBXµ

M. (2.14)

The gauge transformations of the gauge fields are

δHLA = i[H ,A]− 1

e

d

dτ
H ≡ −1

e

DH

Dτ
, (2.15)

δHLB = i[H ,B]− i[L,A] +
1

e

d

dτ
L ≡ i[H ,B] +

1

e

DL

Dτ
, (2.16)

resulting, in conformity with (2.3),

δHL

(D′Xµ

Dτ

)
= (0,

∑

r

[F r, Gr,
D′Xµ

Dτ
]). (2.17)

Note that D′Xµ
◦

Dτ = dXµ
◦

dτ since δHLX
µ
◦ = 0. The symbolD′ with ′ indicates that the definition

of this covariant derivative will be generalized later, taking into account further extensions

of gauge transformations. It is to be kept in mind that AM and BM are zero by definition

and also that we introduced the ein-bein e in order to render these expressions manifestly

covariant under re-parametrization of τ , assuming that the gauge fields are scalar under

the re-parametrization as well as Lorentz transformations.

– 9 –

traceless 
 matrices

“M-plane” 
or  

“M-frame”, 
replacing 
c.m.frame

3. Bosonic action

We now have enough tools at our disposal to discuss the action integral. For simplicity, we
still concentrate to the bosonic part in this section. Our basic requirement is that the action
should have symmetries, apart from the requirement of full SO(10,1) Lorentz-Poincaré in-
variance, under all transformations, namely, τ -reparametrizations, gauge transformations,
and scale transformations which leave the canonical structure introduced in the previous
section invariant. Up to total derivatives, unique possibility for the first-order (with respect
to derivative) term is the Poincaré integral (2.58). As the simplest possible potential term
satisfying these requirements, we choose using (2.12),

1
12

∫
dτ e ⟨[Xµ, Xν , Xσ][Xµ, Xν , Xσ]⟩

=
1
4

∫
dτ e Tr

(
X2

M[Xν , Xσ][Xν , Xσ] − 2[XM · X, Xν ][XM · X, Xν ]
)
. (3.1)

It is to be noted that the numerical proportional constant in front of the potential is arbi-
trary, since we can always absorb it by making a global rescaling (Xµ

M, Pµ
M) → (ρXµ

M, ρ−1Pµ
M)

which keeps the the first-order term intact.
In order to have non-trivial dynamics, we need at least quadratic kinetic terms, typi-

cally as

−
∫

dτ
e

2
Tr(P · P ),

which however apparently violates gauge symmetry under (2.41). The symmetry can be
recovered by the following procedure, which is analogous to a well known situation in the
field theory of a massive vector field.11 Namely, we can introduce an auxiliary traceless
matrix field K transforming simply as

δyK = Y . (3.2)

Then, by replacement P µ → P µ − Pµ
◦ K, we have an invariant quadratic kinetic term,

−
∫

dτ
e

2
Tr(P − P◦K)2 = −

∫
dτ

e

2

( 1
N

P 2
◦ + Tr(P̂ − P◦K)2

)
. (3.3)

11It may be instructive here to formulate a massive Abelian vector field in the first-order formalism (in

four dimensions) with action

Z
d4x

`
−∂µAνF µν +

1
4
FµνF µν − m2

2
AµAµ´

,

Note that we introduce an antisymmetric-tensor field Fµν = −Fνµ as an independent variable. The first

term as an analogue to our Poincaré integral is invariant under two independent gauge transformations

δAµ = ∂µλ and δF µν = 1
2 ϵµναβ(∂αΛβ − ∂βΛα) up to total derivative, while the 2nd and 3rd quadratic

terms are not invariant. The equations of motion reduce to (∂2 − m2)Aµ = 0 and ∂µAµ = 0, the latter

of which eliminates the negative norm. The quadratic terms act partially as gauge-fixing terms for the

gauge symmetry of the first term precisely as in the system we are pursuing. As is well known, it is

possible to recover the gauge symmetry by introducing further unphysical degrees of freedom, the so-called

Stueckelberg field (or the ‘gauge part’ of a Higgs field) which corresponds to our K .
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connection with the embedding of 10-dimensional string theory as emphasized already. As
the equations of motion, we then have conservation laws for Pµ

◦ and Xµ
M,

dPµ
◦

dτ
= 0,

dXµ
M

dτ
= 0. (2.37)

We can then consistently demand that Pµ
◦ is a time-like (or light-like as a limiting case)

vector and, simultaneously, Xµ
M is a space-like vector, and finally that they are orthogonal

to each other,

P◦ · XM = 0. (2.38)

Here and in what follows we often denote Minkowskian scalar product by the “·” symbol and
also use an abbreviation such as X2

M = XM · XM. Now the above orthogonality condition
allows us to impose a condition on the matrix coordinates in a way that is invariant under
the gauge transformation δfgX̂µ,

P◦ · X̂ = 0, (2.39)

which enables us to eliminate the time components of the traceless coordinate matrices.
Since these two constraints are of first-class, we can regard them as the Gauss con-

straints associated with new gauge symmetries. Corresponding to (2.38) and (2.39), re-
spectively, the local gauge transformations which preserve the canonical structure are given
as

δℓX
µ
◦ = LXµ

M, δℓP
µ
◦ = 0, δℓX

µ
M = 0, δℓP

µ
M = −LPµ

◦ , (2.40)

and

δyX̂
µ = 0, δyP̂

µ = Pµ
◦ Y , δyX

µ
◦ = −Tr(Y X̂µ), δyP

µ
◦ = 0, (2.41)

where L and Y are an arbitrary function and an arbitrary traceless matrix function, re-
spectively. It is to be noted that the other variables not shown here explicitly are all inert
in both cases, and also that the conserved vectors Pµ

◦ and Xµ
M are both gauge invariant.

The expression (2.24) of the canonical generator is now generalized to

Cfg+ℓ+y = LP◦ · XM + Tr
(
−P◦ · XY + Pµ(i[H, Xµ] + LXµ

M)
)
. (2.42)

The corresponding covariant derivatives are, generalizing previous definitions with
prime symbols,

DXµ
◦

Dτ
=

dXµ
◦

dτ
− eB◦X

µ
M + eTr(ZX̂µ), (2.43)

DX̂µ

Dτ
=

dX̂µ

dτ
+ ie[A, Xµ] − eB̂Xµ

M, (2.44)

DPµ
M

Dτ
=

dPµ
M

dτ
+ eTr

(
(B̂ + B◦)P µ

)
=

dPµ
M

dτ
+ eTr(B̂P µ) + eB◦P

µ
◦ , (2.45)

DP̂ µ

Dτ
=

dP̂ µ

dτ
+ ie[A,P µ] − eZPµ

◦ , (2.46)
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symmetry :
∫

dτ
[
PM µ

dXµ
M

dτ
+ Tr

(
P µ

DXµ

Dτ

)]

=
∫

dτ
[
PM µ

dXµ
M

dτ
+ P◦µ

DXµ
◦

Dτ
+ Tr

(
P̂ µ

DX̂
µ

Dτ

)]
(42)

= −
∫

dτ
[DPM µ

Dτ
Xµ

M +
dP◦µ

dτ
Xµ

◦ + Tr
(DP̂ µ

Dτ
X̂

µ
)]

,

where in the second line we have separated the center-of-mass part, and in
the third have made partial integration. Note that though we are consid-
ering local τ -dependent canonical transformations as higher gauge trans-
formations, the generalized Poincaré integral is invariant (up to surface
terms) because of the presence of gauge field. This is in contrast to the
usual canonical formalism in which a time dependent canonical transfor-
mation in general induces a shift of Hamiltonian by the time derivative of
the corresponding infinitesimal generator. In our case, this shift is now
compensated for by the transformations of gauge fields.

We require that the τ -derivatives of the dynamical variables appear only
through this invariant, as it should be in any standard canonical (first-
order) formalism. Hence, the same can be said about the gauge fields. This
means that we have already fixed the forms of bosonic parts of all Gaussian
constraints in our system. By taking infinitesimal variations of the gauge
fields, we obtain four independent constaints,

δA : [P µ,Xµ] + · · · ≈ 0, (43)

δB : P̂ µXµ
M ≈ 0, (44)

δZ : X̂µ · Pµ
◦ ≈ 0, (45)

δB : P◦µXµ
M ≈ 0, (46)

where only the first one has a contribution, denoted by ellipsis, from
fermionic part which we will fix later after discussing supersymmetry. All
these constraints are regarded as “weak equations” before gauge fixing: it
is easy to check that the algebra of these constraints close by themselves,
which are therefore of first-class. Note that the matrix constraints (43)∼
(45) are all traceless, due to the fact that all matrix gauge fields are trace-
less. It should also be noted that if we take into account the equation
(39) as a constraint, it should be treated as a second-class constraint, re-
flecting again that it is a sort of gauge-fixing condition for the Y -gauge
transformations, similarly as in the case of massive abelian gauge field.
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which are therefore of first-class. Note that the matrix constraints (43)∼
(45) are all traceless, due to the fact that all matrix gauge fields are trace-
less. It should also be noted that if we take into account the equation
(39) as a constraint, it should be treated as a second-class constraint, re-
flecting again that it is a sort of gauge-fixing condition for the Y -gauge
transformations, similarly as in the case of massive abelian gauge field.
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gauge fields
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where

Mµν ≡ Xµ
MP ν

M −Xν
MPµ

M +Tr(XµP ν −XνP µ) (41)

are the generators of Lorentz transformations, satisfying the correct Lorentz
algebra under the Poisson-bracket algebras from which we have started our
canonical formulation.

Taking into account these extensions of higher-gauge symmetries, we
can now present the final form of covariant derivatives. The new additional
gauge fields are denoted by Z and B corresponding to δY and δw transfor-
mations, respectively, the former of which is again traceless by definition.

DXµ
◦

Dτ
=

dXµ
◦

dτ
− eBXµ

M + eTr(ZX̂
µ
),

DX̂
µ

Dτ
=

dX̂
µ

dτ
+ ie[A,Xµ]− eBXµ

M,

DPµ
M

Dτ
=

dPµ
M

dτ
+ eTr

(
(B +B)P µ),

DP̂
µ

Dτ
=

dP̂
µ

dτ
+ ie[A,P µ]− eZPµ

◦ .

The transformation laws of the new gauge fields are

δHLB = Tr(LZ),

δHLZ = i[H,Z],

δwB =
1

e

dw

dτ
, δwZ = 0,

δY B = −Tr(Y B̂),

δY Z =
1

e

dY

dτ
+ i[A,Y ] ≡ 1

e

DY

Dτ
.

The scaling transformation of newly introduced gauge fields and transfor-
mation parameters are

B → λ2B, Z → λ−2Z, w → λ4w, Y → Y .

Now that we have succeeded to construct a canonical formalism of higher
symmetry, there is a basic canonical gauge invariant, namely, the general-
ized Poincaré integral, involving first derivatives and satisfying the scaling



Light-front gauge fixing:
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large N limit, we are interested in the regime where the spectrum of the
squared mass is of order one and hence the effective mass are independent
of N .

That the effective mass is governed by the internal dynamics of this
system is ensured by the fact that (49) involves only traceless matrix vari-
ables. It is easy to check that the equations of motion preserve the Gauss
constraints, and hence they are consistently implemented. With respect to
different roles of dynamical variables, it is to be noted that there is no iner-
tial kinetic term for the “M-variables” (Xµ

M, Pµ
M), due to the symmetry (2).

Correspondingly, they do not participate to the dynamics actively: Xµ
M is

conserved, while Pµ
M is passively determined by other variables through

DPM

Dτ
= − ∂

∂Mµ
V

where −V is the potential term in the above action and hence does not
involve Pµ

M. The same can be said for the center-of-mass coordinate Xµ
◦

with respect to its passive character.
Now our next task is to confirm that this action leads to the same results

as the light-front Matrix theory if we fix the gauge of higher-gauge sym-
metries appropriately and make explicit the condition of compactification.
We can first choose the M-plane spanned by Pµ

◦ and Xµ
M. Since the former

can be assumed to be time-like for generic states, while the latter then to
be space-like due to the Gauss constraint (46), there is always a Lorentz
frame where only non-zero components of these two conserved vectors are
P 0
◦ , P

10
◦ and X0

M, X10
M , respectively. Thus the M-plane is described by the

light-like components P±
◦ ≡ P 10

◦ ± P 0
◦ , X

±
M ≡ X10

M ± X0
M. We can then

impose a gauge condition

X̂
+
= 0, (50)

using the δL-transformation, by which (45) is reduced to

0 = P+
◦ X̂

−
+ P−

◦ X̂
+
= P◦X̂

−
⇒ X̂

−
= 0 (51)

since P+
◦ ̸= 0 due to our assumption that Pµ

◦ is time-like. With respect to
δY -transformations, we choose K = 0 as discussed in the previous section.
Then the first-order equations of motion allow us to express the light-like
components of the matrix momentum as

P̂
±
=

1

e

dX̂
±

dτ
+ i[A, X̂

±
]−BX±

M (52)
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choose a Lorentz frame such the M-plane  
coincides with “10-0” plane
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Z-gauss constraint:

B-gauss constraint:

December 5, 2016 10:52 WSPC Proceedings - 9in x 6in tohokulecture2016 page 32

32

which gives

P± = −BX±
M

Then, the Gauss constraint (44) gives

0 = XM · P̂ ⇒ BX2
M = 0 B = 0 ⇒ P̂

±
= 0. (53)

Thus all of the light-like traceless matrices vanish in this gauge choice.
Consequently, the squared mass and the remaining Gauss constraint (43)
reduce, respectively, to

M2
boson = NTr

(
P̂

2

i −
1

2
X2

M[Xi,Xj ]
2
)
= Ĥ (54)

[Xi,P i] = 0, (55)

where in the last equality giving Ĥ which coincides with (9) of section 3,
we identified the Lorentz invariant length of the M-variable after recovering
the original unit of length, as

X2
M =

1

ℓ611
(56)

in terms of the fundamental scale of M-theory. This implies that the scaling
symmetry is broken by this choice. We will discuss later about the meaning
of this.

In this gauge, the equations of motion for the center-of-mass variables
and for XM are

P±
◦ = N

(dX±
◦

ds
−BX±

M

)
,

dP±
◦

ds
= 0,

dX±
M

ds
= 0,

where we defined the re-parametrization invariant time parameter s by ds =
edτ . By choosing the gauge condition B = 0 for the δw-transformation, we
have the standard form

P±
◦ = N

dX±
◦

ds
.

or

X+
◦ =

P+
◦
N

s. (57)

It is compulsory to assume that the relation between the target time and
the invariant proper time s is independent of N , as it should be since the
systems with different sizes of matrices can always be regarded as subsys-
tems of larger systems with increasingly larger N . Otherwise, we cannot
consistently decompose a given system as a composite of subsystems: the

eq. of motion:
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large N limit, we are interested in the regime where the spectrum of the
squared mass is of order one and hence the effective mass are independent
of N .

That the effective mass is governed by the internal dynamics of this
system is ensured by the fact that (49) involves only traceless matrix vari-
ables. It is easy to check that the equations of motion preserve the Gauss
constraints, and hence they are consistently implemented. With respect to
different roles of dynamical variables, it is to be noted that there is no iner-
tial kinetic term for the “M-variables” (Xµ

M, Pµ
M), due to the symmetry (2).

Correspondingly, they do not participate to the dynamics actively: Xµ
M is

conserved, while Pµ
M is passively determined by other variables through

DPM

Dτ
= − ∂

∂Mµ
V

where −V is the potential term in the above action and hence does not
involve Pµ

M. The same can be said for the center-of-mass coordinate Xµ
◦

with respect to its passive character.
Now our next task is to confirm that this action leads to the same results

as the light-front Matrix theory if we fix the gauge of higher-gauge sym-
metries appropriately and make explicit the condition of compactification.
We can first choose the M-plane spanned by Pµ

◦ and Xµ
M. Since the former

can be assumed to be time-like for generic states, while the latter then to
be space-like due to the Gauss constraint (46), there is always a Lorentz
frame where only non-zero components of these two conserved vectors are
P 0
◦ , P

10
◦ and X0

M, X10
M , respectively. Thus the M-plane is described by the

light-like components P±
◦ ≡ P 10

◦ ± P 0
◦ , X

±
M ≡ X10

M ± X0
M. We can then

impose a gauge condition

X̂
+
= 0, (50)

using the δL-transformation, by which (45) is reduced to

0 = P+
◦ X̂

−
+ P−

◦ X̂
+
= P◦X̂

−
⇒ X̂

−
= 0 (51)

since P+
◦ ̸= 0 due to our assumption that Pµ

◦ is time-like. With respect to
δY -transformations, we choose K = 0 as discussed in the previous section.
Then the first-order equations of motion allow us to express the light-like
components of the matrix momentum as

P̂
±
=

1

e

dX̂
±

dτ
+ i[A, X̂

±
]−BX±

M (52)
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It is compulsory to assume that the relation between the target time and
the invariant proper time s is independent of N , as it should be since the
systems with different sizes of matrices can always be regarded as subsys-
tems of larger systems with increasingly larger N . Otherwise, we cannot
consistently decompose a given system as a composite of subsystems: the
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large N limit, we are interested in the regime where the spectrum of the
squared mass is of order one and hence the effective mass are independent
of N .

That the effective mass is governed by the internal dynamics of this
system is ensured by the fact that (49) involves only traceless matrix vari-
ables. It is easy to check that the equations of motion preserve the Gauss
constraints, and hence they are consistently implemented. With respect to
different roles of dynamical variables, it is to be noted that there is no iner-
tial kinetic term for the “M-variables” (Xµ

M, Pµ
M), due to the symmetry (2).

Correspondingly, they do not participate to the dynamics actively: Xµ
M is
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= − ∂
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V

where −V is the potential term in the above action and hence does not
involve Pµ

M. The same can be said for the center-of-mass coordinate Xµ
◦

with respect to its passive character.
Now our next task is to confirm that this action leads to the same results

as the light-front Matrix theory if we fix the gauge of higher-gauge sym-
metries appropriately and make explicit the condition of compactification.
We can first choose the M-plane spanned by Pµ

◦ and Xµ
M. Since the former

can be assumed to be time-like for generic states, while the latter then to
be space-like due to the Gauss constraint (46), there is always a Lorentz
frame where only non-zero components of these two conserved vectors are
P 0
◦ , P

10
◦ and X0

M, X10
M , respectively. Thus the M-plane is described by the

light-like components P±
◦ ≡ P 10

◦ ± P 0
◦ , X

±
M ≡ X10

M ± X0
M. We can then

impose a gauge condition

X̂
+
= 0, (50)

using the δL-transformation, by which (45) is reduced to

0 = P+
◦ X̂

−
+ P−

◦ X̂
+
= P◦X̂

−
⇒ X̂

−
= 0 (51)

since P+
◦ ̸= 0 due to our assumption that Pµ

◦ is time-like. With respect to
δY -transformations, we choose K = 0 as discussed in the previous section.
Then the first-order equations of motion allow us to express the light-like
components of the matrix momentum as

P̂
±
=

1

e

dX̂
±

dτ
+ i[A, X̂

±
]−BX±

M (52)
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squared mass is of order one and hence the effective mass are independent
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with respect to its passive character.
Now our next task is to confirm that this action leads to the same results

as the light-front Matrix theory if we fix the gauge of higher-gauge sym-
metries appropriately and make explicit the condition of compactification.
We can first choose the M-plane spanned by Pµ

◦ and Xµ
M. Since the former

can be assumed to be time-like for generic states, while the latter then to
be space-like due to the Gauss constraint (46), there is always a Lorentz
frame where only non-zero components of these two conserved vectors are
P 0
◦ , P 10

◦ and X0
M, X10

M , respectively. Thus the M-plane is described by the
light-like components P±

◦ ≡ P 10
◦ ± P 0

◦ , X±
M ≡ X10

M ± X0
M. We can then

impose a gauge condition

X̂
+

= 0, (50)

using the δL-transformation, by which (45) is reduced to

0 = P+
◦ X̂

−
+ P−

◦ X̂
+

= P◦X̂
−

⇒ X̂
−

= 0 (51)

since P+
◦ ≠ 0 due to our assumption that Pµ

◦ is time-like. With respect to
δY -transformations, we choose K = 0 as discussed in the previous section.
Then the first-order equations of motion allow us to express the light-like
components of the matrix momentum as

P̂
±

=
1
e

dX̂
±

dτ
+ i[A, X̂

±
] − BX±

M (52)
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hence we cannot define these transformation δH + δL and δH + δY as two
independent transformations, unless we separate the δH part. These two
sets of gauge symmetries are somewhat analogous to the presence of holo-
morphic and anti-holomorphic parts of conformal symmetries in (closed)
string theory.

Here no attentive reader can fail to notice that the previous form of
the integral invariant (36) for momentum obviously violates the symmetry
under (38). This is easily remedied by a modification with the replacement
P̂

µ
→ P̂

µ
− (P 2

◦ )−1Pµ
◦ (P̂ · P◦). More appropriately, we can introduce an

additional auxiliary (traceless) matrix variable K, transforming as

δY K = Y

and rewrite an integral invariant as
∫

dτ e Tr(P − P◦K)2 =
∫

dτ e
( 1

N
P 2
◦ + Tr(P̂ − P◦K)2

)

The variation with respect to K gives

P◦ · (P̂ − P◦K) = 0. (39)

We may gauge-fix the Y -transformation by choosing a condition, say, K =
0, which would lead to a constraint

P◦ · P̂ = 0,

which serves to eliminate explicitly the time-like component of the traceless
part of the matrix momentum. The reader might recall that the situation
is similar to the Higgs mechanism in formulating abelian massive vector
gauge field covariantly.

In terms of the infinitesimal canonical generator extending (35), our
postulate for higher symmetries now amounts to

Cw+Y +H+L = wP◦ · XM + Tr
(
−(P◦ · X)Y + iP µ[H, Xµ] + (XM · P )L

)
.

where the decomposition w + Y + H + L on the l.h.side should be obvi-
ous from the corresponding order of the transformation parameters on the
r.h.side. Here, we have included also the first term, w-transformation with
an arbitrary functions w = w(τ), given by

δwXµ
◦ = wXM, δwPµ

M = −wPµ
◦

which enable one to shift the time-like component of Pµ
M arbitrarily.



Light-like components of traceless matrix variables are 
completely eliminated, due to the Gauss constraints of higher 
gauge symmetries

DLCQ compactification condition is an automatic  
consequence of synchronization with  
a single and invariant time parameter
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4. Clues toward higher-gauge symmetries

It is obvious that, to realize such a covariant system, we need a new kind
of symmetries which encompass and extend the SU(N) gauge symmetry
of the light-front formulation. In particular, it is crucial for the DLCQ
scheme that such higher symmetries are operational even for finite N . In
that sense, the viewpoint that the matrix theory is just a mere regulariza-
tion of supermembranes should be abandoned. In fact, the simple matrix
theory explained in the previous section exhibits several notable features
that indeed this theory itself has some fundamental significance, indepen-
dently of its relation to supermembranes. It is to be noted, at the basis for
such features, that the system can be regarded as a self-consisting universal
system. This may be signified in the following serial patterns of the theories
with increasingly larger gauge groups:

· · · ⊂ SU(N) ⊂ SU(N + 1)⊂ · · · ⊂ SU(N +M) ⊂ · · · ,

and

· · · ⊂ SU(N1) ⊂ SU(N1)× SU(N2)
⊂ SU(N1 +N2) ⊂ SU(N1 +N2) × SU(N3) ⊂ SU(N1 +N2 +N3) ⊂ · · · ,

and so on.

In other words, the system can in principle describe arbitrary multi-body
states of physical objects which are represented by smaller sub-systems with
hermitian sub-matrices. In this way, we can represent various many-body
D-brane configurations and simulate their general-relativistic interactions,
as reviewed in11. For example, it has been confirmed that 3-body nonlinear
interactions of gravitons described by the classical Einstein action of 11 di-
mensional supergrvatity emerge correctly12 even with finite N through the
perturbative loop effects of off-diagonal matrix elements. This evidences
our view that the SU(N) matrix theory of finite N already has some fun-
damental meaning beyond a possible approximate regularized formulation
of supermembranes.

With this caveat in mind, we can still extract some useful hints about
desirable higher symmetries from the membrane analogy at least at a formal
level. The SU(N) gauge symmetry of light-front matrix theory corresponds
mathematically to the area-preserving diffeomorphism (3) on the membrane
side. The area-preserving diffeomorphism can be regarded as a gauge-fixed
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hermitian sub-matrices. In this way, we can represent various many-body
D-brane configurations and simulate their general-relativistic interactions,
as reviewed in11. For example, it has been confirmed that 3-body nonlinear
interactions of gravitons described by the classical Einstein action of 11 di-
mensional supergrvatity emerge correctly12 even with finite N through the
perturbative loop effects of off-diagonal matrix elements. This evidences
our view that the SU(N) matrix theory of finite N already has some fun-
damental meaning beyond a possible approximate regularized formulation
of supermembranes.

With this caveat in mind, we can still extract some useful hints about
desirable higher symmetries from the membrane analogy at least at a formal
level. The SU(N) gauge symmetry of light-front matrix theory corresponds
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all subsystems are synchronized with a  
single (common) proper time, irrespective of N
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which gives

P± = −BX±
M

Then, the Gauss constraint (44) gives

0 = XM · P̂ ⇒ BX2
M = 0 B = 0 ⇒ P̂

±
= 0. (53)

Thus all of the light-like traceless matrices vanish in this gauge choice.
Consequently, the squared mass and the remaining Gauss constraint (43)
reduce, respectively, to

M2
boson = NTr

(
P̂

2

i −
1

2
X2

M[Xi,Xj ]
2
)
= Ĥ (54)

[Xi,P i] = 0, (55)

where in the last equality giving Ĥ which coincides with (9) of section 3,
we identified the Lorentz invariant length of the M-variable after recovering
the original unit of length, as

X2
M =

1

ℓ611
(56)

in terms of the fundamental scale of M-theory. This implies that the scaling
symmetry is broken by this choice. We will discuss later about the meaning
of this.

In this gauge, the equations of motion for the center-of-mass variables
and for XM are

P±
◦ = N

(dX±
◦

ds
−BX±

M

)
,

dP±
◦

ds
= 0,

dX±
M

ds
= 0,

where we defined the re-parametrization invariant time parameter s by ds =
edτ . By choosing the gauge condition B = 0 for the δw-transformation, we
have the standard form

P±
◦ = N

dX±
◦

ds
.

or

X+
◦ =

P+
◦
N

s. (57)

It is compulsory to assume that the relation between the target time and
the invariant proper time s is independent of N , as it should be since the
systems with different sizes of matrices can always be regarded as subsys-
tems of larger systems with increasingly larger N . Otherwise, we cannot
consistently decompose a given system as a composite of subsystems: the
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large N limit, we are interested in the regime where the spectrum of the
squared mass is of order one and hence the effective mass are independent
of N .

That the effective mass is governed by the internal dynamics of this
system is ensured by the fact that (49) involves only traceless matrix vari-
ables. It is easy to check that the equations of motion preserve the Gauss
constraints, and hence they are consistently implemented. With respect to
different roles of dynamical variables, it is to be noted that there is no iner-
tial kinetic term for the “M-variables” (Xµ

M, Pµ
M), due to the symmetry (2).

Correspondingly, they do not participate to the dynamics actively: Xµ
M is

conserved, while Pµ
M is passively determined by other variables through

DPM

Dτ
= − ∂

∂Mµ
V

where −V is the potential term in the above action and hence does not
involve Pµ

M. The same can be said for the center-of-mass coordinate Xµ
◦

with respect to its passive character.
Now our next task is to confirm that this action leads to the same results

as the light-front Matrix theory if we fix the gauge of higher-gauge sym-
metries appropriately and make explicit the condition of compactification.
We can first choose the M-plane spanned by Pµ

◦ and Xµ
M. Since the former

can be assumed to be time-like for generic states, while the latter then to
be space-like due to the Gauss constraint (46), there is always a Lorentz
frame where only non-zero components of these two conserved vectors are
P 0
◦ , P

10
◦ and X0

M, X10
M , respectively. Thus the M-plane is described by the

light-like components P±
◦ ≡ P 10

◦ ± P 0
◦ , X

±
M ≡ X10

M ± X0
M. We can then

impose a gauge condition

X̂
+
= 0, (50)

using the δL-transformation, by which (45) is reduced to

0 = P+
◦ X̂

−
+ P−

◦ X̂
+
= P◦X̂

−
⇒ X̂

−
= 0 (51)

since P+
◦ ̸= 0 due to our assumption that Pµ

◦ is time-like. With respect to
δY -transformations, we choose K = 0 as discussed in the previous section.
Then the first-order equations of motion allow us to express the light-like
components of the matrix momentum as

P̂
±
=

1

e

dX̂
±

dτ
+ i[A, X̂

±
]−BX±

M (52)
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system is ensured by the fact that (49) involves only traceless matrix vari-
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constraints, and hence they are consistently implemented. With respect to
different roles of dynamical variables, it is to be noted that there is no iner-
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M), due to the symmetry (2).

Correspondingly, they do not participate to the dynamics actively: Xµ
M is

conserved, while Pµ
M is passively determined by other variables through

DPM

Dτ
= − ∂

∂Mµ
V

where −V is the potential term in the above action and hence does not
involve Pµ

M. The same can be said for the center-of-mass coordinate Xµ
◦

with respect to its passive character.
Now our next task is to confirm that this action leads to the same results

as the light-front Matrix theory if we fix the gauge of higher-gauge sym-
metries appropriately and make explicit the condition of compactification.
We can first choose the M-plane spanned by Pµ

◦ and Xµ
M. Since the former

can be assumed to be time-like for generic states, while the latter then to
be space-like due to the Gauss constraint (46), there is always a Lorentz
frame where only non-zero components of these two conserved vectors are
P 0
◦ , P

10
◦ and X0

M, X10
M , respectively. Thus the M-plane is described by the

light-like components P±
◦ ≡ P 10

◦ ± P 0
◦ , X

±
M ≡ X10

M ± X0
M. We can then

impose a gauge condition

X̂
+
= 0, (50)

using the δL-transformation, by which (45) is reduced to

0 = P+
◦ X̂

−
+ P−

◦ X̂
+
= P◦X̂

−
⇒ X̂

−
= 0 (51)

since P+
◦ ̸= 0 due to our assumption that Pµ

◦ is time-like. With respect to
δY -transformations, we choose K = 0 as discussed in the previous section.
Then the first-order equations of motion allow us to express the light-like
components of the matrix momentum as

P̂
±
=

1

e

dX̂
±

dτ
+ i[A, X̂

±
]−BX±

M (52)
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time must be common to subsystems which are all synchronized with a
single global internal time, as we have stressed in the previous section as
a premiss of our canonical approach using a single proper time. Thus we
must have

P+
◦ =

2N

R
(58)

with R being a constant parameter which is independent of N but can
be varied continuously for different choices of the Lorentz frame. This
somewhat remarkable result is consistent with the light-front Matrix theory
as an effective theory of D0-branes where all D0-branes are supposed to have
a single quantized unit of KK momentum in the limit of small R identified
with R11.

Finally, we can derive an effective action for the remaining transverse
variables by substituting

P−
◦ = − Ĥ

P+
◦

back into the original action. The result is, making conversion to the
second-order formalism after eliminating the momenta,

Aeff =

∫
dx+ 1

2R
Tr

(DX̂
i

Dx+

DX̂i

Dx+
+

R2

2ℓ611
[Xi,Xj ][Xi,Xj ]

)

where we redefine the light-like time by s = 2Nx+/P+
◦ (X◦ = 2x+).

The equations of motion for the center-of-mass coordinates and mo-
menta also allows us to impose the BFSS condition

P 10
◦ =

N

R11

instead of the DLCQ scheme. In this case, we solve the mass-shell constraint
as

P 0
◦ =

√
(P 10

◦ )2 +NTr
(
P̂ i · P̂ i −

1

2
X2

M[Xi,Xj ][Xi,Xj ]
)
.

Then the effective action is

Aspat boson =

∫
dt
[
Tr

(
P̂ i

DX̂i

Dt

)
− P 0

◦

]

with the time parameter t = X0
◦ = P 10

◦ s/N = s/R11. By eliminating P̂ i in
terms of the coordinate variables, we obtain the following Born-Infeld-like
action:

Aspat boson = −
∫

dtMspat

√
N
[
1− 1

N
Tr

(DX̂i

Dt

DX̂i

Dt

)]1/2
,
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which give

P± = −BX±
M.

Then, from the Gauss constraint (44) we obtain

0 = X−
M · P̂ ⇒ BX2

M = 0 B = 0 ⇒ P̂
±
= 0. (53)

Thus all of the light-like traceless matrices vanish in this gauge choice.
Consequently, the squared mass and the remaining Gauss constraint (43)
reduce, respectively, to

M2
boson = NTr

(
P̂

2

i −
1

2
X2

M[Xi,Xj ]
2
)
= Ĥ, (54)

[Xi,P i] = 0, (55)

which coincides with (9) of section 3, by identifying the Lorentz invariant
length of the M-variable after recovering the original unit of length, as

X2
M =

1

ℓ611
(56)

in terms of the fundamental scale of M-theory. This implies that the scaling
symmetry is broken by this choice. We will discuss about the meaning of
this later.

In this gauge, the equations of motion for the center-of-mass variables
and for XM are

P±
◦ = N

(dX±
◦

ds
−BX±

M

)
,

dP±
◦

ds
= 0,

dX±
M

ds
= 0,

where we defined the re-parametrization invariant time parameter s by ds =
edτ . By choosing the gauge condition B = 0 for the δw-transformation, we
have the standard form

P±
◦ = N

dX±
◦

ds
,

or

X+
◦ =

P+
◦
N

s. (57)

It is compulsory to assume that the relation between the target time and
the invariant proper time s is independent of N , as it should be since the
systems with different sizes of matrices can always be regarded as subsys-
tems of larger systems with increasingly larger N . Otherwise, we cannot
consistently decompose a given system as a composite of subsystems: time
τ or s must be common to subsystems which are all synchronized with a
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If we adopt the BFSS condition for compactification
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time must be common to subsystems which are all synchronized with a
single global internal time, as we have stressed in the previous section as
a premiss of our canonical approach using a single proper time. Thus we
must have

P+
◦ =

2N

R
(58)

with R being a constant parameter which is independent of N but can
be varied continuously for different choices of the Lorentz frame. This
somewhat remarkable result is consistent with the light-front Matrix theory
as an effective theory of D0-branes where all D0-branes are supposed to have
a single quantized unit of KK momentum in the limit of small R identified
with R11.

Finally, we can derive an effective action for the remaining transverse
variables by substituting

P−
◦ = − Ĥ

P+
◦

back into the original action. The result is, making conversion to the
second-order formalism after eliminating the momenta,

Aeff =

∫
dx+ 1

2R
Tr

(DX̂
i

Dx+

DX̂i

Dx+
+

R2

2ℓ611
[Xi,Xj ][Xi,Xj ]

)

where we redefine the light-like time by s = 2Nx+/P+
◦ (X◦ = 2x+).

The equations of motion for the center-of-mass coordinates and mo-
menta also allows us to impose the BFSS condition

P 10
◦ =

N

R11

instead of the DLCQ scheme. In this case, we solve the mass-shell constraint
as

P 0
◦ =

√
(P 10

◦ )2 +NTr
(
P̂ i · P̂ i −

1

2
X2

M[Xi,Xj ][Xi,Xj ]
)
.

Then the effective action is

Aspat boson =

∫
dt
[
Tr

(
P̂ i

DX̂i

Dt

)
− P 0

◦

]

with the time parameter t = X0
◦ = P 10

◦ s/N = s/R11. By eliminating P̂ i in
terms of the coordinate variables, we obtain the following Born-Infeld-like
action:

Aspat boson = −
∫

dtMspat

√
N
[
1− 1

N
Tr

(DX̂i

Dt

DX̂i

Dt

)]1/2
,

the system ends up with a Born-Infeld-like effective action
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large N limit, we are interested in the regime where the spectrum of the
squared mass is of order one and hence the effective mass are independent
of N .

That the effective mass is governed by the internal dynamics of this
system is ensured by the fact that (49) involves only traceless matrix vari-
ables. It is easy to check that the equations of motion preserve the Gauss
constraints, and hence they are consistently implemented. With respect to
different roles of dynamical variables, it is to be noted that there is no iner-
tial kinetic term for the “M-variables” (Xµ

M, Pµ
M), due to the symmetry (2).

Correspondingly, they do not participate to the dynamics actively: Xµ
M is

conserved, while Pµ
M is passively determined by other variables through

DPM

Dτ
= − ∂

∂Mµ
V

where −V is the potential term in the above action and hence does not
involve Pµ

M. The same can be said for the center-of-mass coordinate Xµ
◦

with respect to its passive character.
Now our next task is to confirm that this action leads to the same results

as the light-front Matrix theory if we fix the gauge of higher-gauge sym-
metries appropriately and make explicit the condition of compactification.
We can first choose the M-plane spanned by Pµ

◦ and Xµ
M. Since the former

can be assumed to be time-like for generic states, while the latter then to
be space-like due to the Gauss constraint (46), there is always a Lorentz
frame where only non-zero components of these two conserved vectors are
P 0
◦ , P

10
◦ and X0

M, X10
M , respectively. Thus the M-plane is described by the

light-like components P±
◦ ≡ P 10

◦ ± P 0
◦ , X

±
M ≡ X10

M ± X0
M. We can then

impose a gauge condition

X̂
+
= 0, (50)

using the δL-transformation, by which (45) is reduced to

0 = P+
◦ X̂

−
+ P−

◦ X̂
+
= P◦X̂

−
⇒ X̂

−
= 0 (51)

since P+
◦ ̸= 0 due to our assumption that Pµ

◦ is time-like. With respect to
δY -transformations, we choose K = 0 as discussed in the previous section.
Then the first-order equations of motion allow us to express the light-like
components of the matrix momentum as

P̂
±
=

1

e

dX̂
±

dτ
+ i[A, X̂

±
]−BX±

M (52)
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Mspat ≡
[ N

R2
11

− 1

2ℓ611
Tr

(
[Xi,Xj ][Xi,Xj ]

)]1/2
.

If we assume that the kinetic term, Tr
(

DX̂i
Dt

DX̂i
Dt

)
, and the potential term,

Tr
(
[Xi,Xj ][Xi,Xj ]

)
, are at most of order O(1) with respect to N , the

above effective action is approximated as

∫
dt

N

R11

[
−1 +

1

2N
Tr

(DX̂i

Dt

DX̂i

Dt
+

R2
11

2ℓ611
[Xi,Xj ][Xi,Xj ]

)
+O(

1

N2
)
]
.

Of course, this is consistent with our expectation from the viewpoint on the
relationship between the IMF and DLCQ schemes, as we have discussed in
section 3.

On the other hand, our result shows that in the opposite limit R11 → ∞
with fixed N , the system becomes a very peculiar system which does not
have standard kinetic terms. In this limit, it seems that only tractable way
of studying this system is through the DLCQ scheme.

At this juncture, let us consider the meaning of the violation of scaling
symmetry, which is required in order to relate our system with light-front
Matrix theory. Namely, the 11 dimensional Planck length emerges by speci-
fying the value of X2

M as an initial condition. This determines the coupling
constant for the internal dynamics of the system. A natural interpreta-
tion of this situation seems that X2

M defines a super-selection rule with
respect to scaling transformations. Namely, once its value is fixed by initial
condition, no superposition is allowed among different values of X2

M. The
scale symmetry means that any two systems with different values of X2

M

are mapped into each other with a simple rescaling of dynamical variables.
Thus all the different super-selection sectors actually describe essentially
the same physics, apart from global scaling transformations. The initial
condition just selects one of the continuously distributed super-selection
sectors. In this sense, scale symmetry is spontaneously broken. On the
other hand, scale symmetry signifies an important fact that our theory
has one and only one fundamental length scale ℓ11 through spontaneous
symmetry breaking.

It should be noted also that, even though states are not superposed be-
tween different values of invariant X2

M, states with different Lorentz com-
ponents of Xµ

M must be allowed to superpose. That this is the case is seen,
for instance, from the constraint (46), which in the light-like coordinates of
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with fixed N , the system becomes a very peculiar system which does not
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respect to scaling transformations. Namely, once its value is fixed by initial
condition, no superposition is allowed among different values of X2

M. The
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Thus all the different super-selection sectors actually describe essentially
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condition just selects one of the continuously distributed super-selection
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ponents of Xµ

M must be allowed to superpose. That this is the case is seen,
for instance, from the constraint (46), which in the light-like coordinates of

consistent with the original BFSS conjecture



Other roles of the “M-variables”
❖ Emergence of the fundamental scale of M-theory:  
“spontaneous breaking” of global scaling symmetry 
          ( at initial time of the universe)
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which gives

P± = −BX±
M

Then, the Gauss constraint (44) gives

0 = XM · P̂ ⇒ BX2
M = 0 B = 0 ⇒ P̂

±
= 0. (53)

Thus all of the light-like traceless matrices vanish in this gauge choice.
Consequently, the squared mass and the remaining Gauss constraint (43)
reduce, respectively, to

M2
boson = NTr

(
P̂

2

i −
1

2
X2

M[Xi,Xj ]
2
)
= Ĥ (54)

[Xi,P i] = 0, (55)

where in the last equality giving Ĥ which coincides with (9) of section 3,
we identified the Lorentz invariant length of the M-variable after recovering
the original unit of length, as

X2
M =

1

ℓ611
(56)

in terms of the fundamental scale of M-theory. This implies that the scaling
symmetry is broken by this choice. We will discuss later about the meaning
of this.

In this gauge, the equations of motion for the center-of-mass variables
and for XM are

P±
◦ = N

(dX±
◦

ds
−BX±

M

)
,

dP±
◦

ds
= 0,

dX±
M

ds
= 0,

where we defined the re-parametrization invariant time parameter s by ds =
edτ . By choosing the gauge condition B = 0 for the δw-transformation, we
have the standard form

P±
◦ = N

dX±
◦

ds
.

or

X+
◦ =

P+
◦
N

s. (57)

It is compulsory to assume that the relation between the target time and
the invariant proper time s is independent of N , as it should be since the
systems with different sizes of matrices can always be regarded as subsys-
tems of larger systems with increasingly larger N . Otherwise, we cannot
consistently decompose a given system as a composite of subsystems: the

(or a super selection rule)

❖ Covariant formulation of (dynamical) supersymmetry  
by providing a natural covariant projection condition  
on spinor matrices        : 
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in order to meet our requirements (63). We introduce the projection con-
ditions as

P−Θ = Θ, P+Θ = 0, (or equivalently Θ̄P+ = Θ̄, Θ̄P− = 0) (66)

together with the opposite projection on ϵ,

P+ϵ = ϵ, P−ϵ = 0, (or equivalently ϵ̄P− = ϵ̄, ϵ̄P+ = 0). (67)

This eliminates a half of 32 Majorana components, as required. Using the
postulate (62), we can confirm that the second of (63) is indeed satisfied:

ϵ̄P◦ · ΓΘ = ϵ̄P−(P◦ · Γ)P−Θ = ϵ̄(P◦ · Γ)P+P−Θ = 0, (68)

and also

ϵ̄XM · ΓΘ = ϵ̄P−(XM · Γ)P−Θ = ϵ̄XM · ΓP+P−Θ = 0, (69)

while

ϵ̄ΓiΘ = ϵ̄P−ΓiP−Θ = ϵ̄ΓiP−Θ = ϵ̄P−ΓiΘ (70)

can be non-vanishing for all i’s, transverse to both Pµ
◦ and Xµ

M. Thus as
expected, the dynamical supersymmetry is effective only for the spacetime
directions which are transverse to the M-plane. This is natural, since as we
have seen clearly in the previous section that internal dynamics is associated
entirely to the transverse variables.

In fact, if we adopt the light-like Lorentz frame which we have intro-
duced in discussing gauge fixing in the previous section, the projection
condition is equivalent to the ordinary light-cone condition for fermionic
matrices: we can rewrite (66) by multiplying Γ◦ on both sides, as

(Γ◦ − ΓM)Θ = 0,

which reduces to

0 =
1

2
√

−P 2
◦

(
P+
◦ Γ− + P−

◦ Γ+ −
√
−P+

◦ P−
◦√

X2
M

(X+
MΓ− +X−

MΓ+)
)
Θ

=
1

2
√

−P 2
◦

(
P+
◦ Γ− + P−

◦ Γ+ − P+
◦

X+
M

(X+
MΓ− +

X2
M

X+
M

Γ+)
)
Θ

= −

√

−P−
◦

P+
◦
Γ+Θ.

We will give full transformation laws for dynamical supersymmetry, af-
ter showing the total supersymmetric action involving both bosonic and
fermionic variables in the next section.
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the previous one for the center-of-mass system. We call this supersymmetry
dynamical supersymmetry. For this type of transformations to be success-
fully formulated, as we have discussed in the beginning of this section, we
have to impose some constraints, thereby which the degrees of freedom
match between bosonic and fermionic sides. This necessarily comes about
by requiring that supersymmetry transformation should keep the bosonic
Gauss constraints consistently. If we assume naturally that Pµ

◦ and Xµ
M

are inert under dynamical super transformation, the constraints, (44) and
(45), require

XM · δϵP̂ = 0, P◦ · δϵX̂ = 0, (63)

respectively. There is a natural projection condition suitable for our de-
mand, due to the existence of the M-plane in the bosonic sector. We define
(real) projection operators

P± ≡ 1

2
(1± Γ◦ΓM), P 2

± = P±, P±P∓ = 0 (64)

where

ΓM ≡ XM · Γ√
X2

M

, Γ◦ ≡ P◦ · Γ√
−P 2

◦

are conserved and Lorentz invariant, satisfying

ΓMΓ◦ + Γ◦ΓM = 0, Γ2
M = 1, Γ2

◦ = −1, (Γ◦ΓM)2 = 1,

P+ΓM = ΓMP−, P+Γ◦ = Γ◦P−, P±Γi = ΓiP±, (65)

where i denotes SO(9) directions in any (orthogonal) basis, being transverse
to the M-plane. For the validity of these relations, it is crucial to use
the orthogonality of two conserved vectors Pµ

◦ and Xµ
M, namely the Gauss

constraint (46) associated with δw-gauge transformations. Thus it should be
kept in mind that the dynamical supersymmetry is satisfied in each sector
with definite values of these conserved and mutually orthogonal vectors.

The last relation (65) shows that we can clearly separate the directions
between those (called “longitudinal”) along the M-plane and those (called
“transversal”) orthogonal to the M-plane. This is precisely what we need
in order to meet our requirements (63). We introduce the projection con-
ditions as

P−Θ = Θ, P+Θ = 0, (or equivalently Θ̄P+ = Θ̄, Θ̄P− = 0) (66)

together with the opposite projection on ϵ,

P+ϵ = ϵ, P−ϵ = 0, (or equivalently ϵ̄P− = ϵ̄, ϵ̄P+ = 0). (67)
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total action:
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12. The total supersymmetric action

The total action is

A = Aboson +Afermion, (71)

where Aboson is given by (47) and

Afermion =

∫
dτ

[
Θ̄◦P◦ · Γ

dΘ◦
dτ

+
1

2
Tr

(
Θ̄Γ◦

DΘ

Dτ

)

− e
i

4

〈
Θ̄,Γµν [X

µ, Xν ,Θ]
〉]
, (72)

〈
Θ̄,Γµν [X

µ, Xν ,Θ]
〉

= 2
√

X2
MTr

(
Θ̄Γ◦Γi[Xi,Θ]

)
= 2

√
X2

MTr
(
Θ̄Γ◦Γµ[X

µ,Θ]
)
. (73)

The last expression of the femionic potential terms is derived by using
〈
Θ̄,Γµν [X

µ, Xν ,Θ]
〉
= 2Tr

(
Θ̄ΓµνX

µ
M[Xν ,Θ]

)

which is rewritten as above due to the projection condition ΓMΘ = Γ◦Θ.
Here it is to be noted that the normalizations of the center-of-mass part and
of the traceless matrix part is different, such that, in the latter, the scaling
dimensions of Θ is chosen to be zero, while that of the susy parameter ϵ is 1,
in order to simplifying the expressions. The full dynamical supersymmetry
transformations are

δϵX̂
µ
= ϵ̄ΓµΘ, (74)

δϵP̂ µ = i
√

X2
M

[
Θ̄Γµνϵ, X̃

ν
], δϵK = 0, (75)

δϵΘ = P−
(
Γ◦ΓµP̂

µ
ϵ− i

2

√
X2

M Γ◦Γµνϵ[X̃
µ
, X̃

ν
]
)
, (76)

δϵA =
√
X2

M Θ̄ϵ, (77)

δϵB = i
(
X2

M

)−1
[δϵA, XM ·X], (78)

δϵZ = i(P 2
◦ )

−1[δϵA, P◦ · P ]

+
X2

M

2P 2
◦
([δϵX

µ, [P◦ ·X,Xµ]] + [Xµ, [P◦ ·X, δϵXµ]]), (79)

with

X̃
µ
= Xµ − 1

X2
M

Xµ
M(X ·XM)− 1

P 2
◦
Pµ
◦ (X · P◦). (80)

It is easy to check that the transformation law (75) for the momentum
matrix satisfies the first of our requirements (63).
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Internal (dynamical) susy, in each sector of conserved       and      
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Since we are supposing a flat 11 dimensional Minkowskian spacetimes,
we require translation invariance under Xµ

� ! Xµ

� + cµ with an arbitrary
constant vector cµ. Thus we have conservation of total momentum

dPµ

�

d⌧
= 0.

As an additional condition, we demand that the system has also a trans-
lation symmetry with respect to a shift of the auxiliary momentum Pµ

M,
Pµ

M ! Pµ

M + bµ with an arbitrary constant vector bµ, thereby Xµ

M being
also conserved,

dXµ

M

d⌧
= 0.

Both these symmetries are satisfied by all integral invariants discussed so
far.

� Pµ

�

�`X
µ

M
= 0

Fig. 3. M

-plane spanned by Pµ

�
and Xµ

M

The conserved center-of-mass momentum Pµ

�
must be time-like (including a possible special case
of light-like limit), P 2

� < 0. Due to the Gauss con-
straint (46), this implies that Xµ

M is a (conserved)
space-like vector. Thus given an initial condition,
we are automatically specifying a conserved two-
dimensional plane spanned by Pµ

� and Xµ

M in the
Minkowski spacetime. In the following, we call
this plane “M-plane” for convenience. In fixing the
gauge for higher symmetries, the M-plane will play
a preferential role, in the sense that there are no
local physical degrees of freedom living solely on
the M-plane. The situation is essentially the same
as in any Lorentz covariant formulation of particles
in configuration space: recall that, given any state
in a many-body system, we have a particular pref-
erential frame, namely, the center-of-mass frame, where all of the spatial
components of Pµ

� vanish. Namely, the preferential frames appear when-
ever we consider a particular state of particles, which specifies a particular
configuration of particles. Only di↵erence is that in our case, there are
two vectors, one time-like and the other space-like, instead of one time-like
vector in cases of the usual many-body systems. The covariance of such
formulations in configuration space is guaranteed by the existence of gen-
erators of Lorentz transformation which operate in the space of states and
satisfy the correct Lorentz algebra.
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symmetry :
Z

d⌧
h
PMµ

dXµ

M

d⌧
+Tr

⇣
P µ

DX
µ

D⌧

⌘i

=

Z
d⌧

h
PMµ

dXµ

M

d⌧
+ P�µ

DXµ

�

D⌧
+Tr

⇣
P̂ µ

DX̂
µ

D⌧

⌘i
(42)

= �
Z

d⌧
hDPMµ

D⌧
Xµ

M +
dP�µ

d⌧
Xµ

� +Tr
⇣DP̂ µ

D⌧
X̂

µ
⌘i

,

where in the second line we have separated the center-of-mass part, and in
the third have made partial integration. Note that though we are consid-
ering local ⌧ -dependent canonical transformations as higher gauge trans-
formations, the generalized Poincaré integral is invariant (up to surface
terms) because of the presence of gauge field. This is in contrast to the
usual canonical formalism in which a time dependent canonical transfor-
mation in general induces a shift of Hamiltonian by the time derivative of
the corresponding infinitesimal generator. In our case, this shift is now
compensated for by the transformations of gauge fields.

We require that the ⌧ -derivatives of the dynamical variables appear only
through this invariant, as it should be in any standard canonical (first-
order) formalism. Hence, the same can be said about the gauge fields. This
means that we have already fixed the forms of bosonic parts of all Gaussian
constraints in our system. By taking infinitesimal variations of the gauge
fields, we obtain four independent constaints,

�A : [P µ,X
µ] + · · · ⇡ 0, (43)

�B : P̂ µX
µ

M ⇡ 0, (44)

�Z : X̂µ · Pµ

� ⇡ 0, (45)

�B : P�µX
µ

M ⇡ 0, (46)

where only the first one has a contribution, denoted by ellipsis, from
fermionic part which we will fix later after discussing supersymmetry. All
these constraints are regarded as “weak equations” before gauge fixing: it
is easy to check that the algebra of these constraints close by themselves,
which are therefore of first-class. Note that the matrix constraints (43)⇠
(45) are all traceless, due to the fact that all matrix gauge fields are trace-
less. It should also be noted that if we take into account the equation
(39) as a constraint, it should be treated as a second-class constraint, re-
flecting again that it is a sort of gauge-fixing condition for the Y -gauge
transformations, similarly as in the case of massive abelian gauge field.

jection conditions (4.27), (4.28) and the Gauss constraint (2.38) for the δw-gauge symmetry,

δϵX̂
µ = ϵ̄ΓµΘ, (4.36)

δϵP̂µ = i
√

X2
M

[
Θ̄Γµνϵ, X̃

ν ], δϵK = 0, (4.37)

δϵΘ = P−
(
Γ◦ΓµP̂

µϵ− i

2

√
X2

M Γ◦Γµνϵ[X̃
µ, X̃ν ]

)
, (4.38)

δϵA =
√
X2

M Θ̄ϵ, (4.39)

δϵB = i
(
X2

M

)−1
[δϵA, XM ·X], (4.40)

δϵZ = i(P 2
◦ )

−1[δϵA, P◦ · P ] +
X2

M

2P 2
◦
([δϵX

µ, [P◦ ·X,Xµ]] + [Xµ, [P◦ ·X, δϵXµ]]) (4.41)

with

X̃µ = Xµ − 1

X2
M

Xµ
M(X ·XM)− 1

P 2
◦
Pµ
◦ (X · P◦). (4.42)

It is easy to check that due to our projection condition, (4.19) is satisfied as promised before.

Remember again that, as we have emphasized, the equations of motion for the center-of-

mass variables and the M-variables, especially conservation laws of Pµ
◦ and Xµ

M which are

completely inert against supersymmetry transformations as well as gauge transformaionts,

are assumed here. On the other hand, the behavior of their conjugates, namely the passive

variables, are fixed by the first order equations of motion. It is also to be noted that these

transformation laws are independent of the ein-bein e. This implies that the part of the

action involving τ -derivatives and the remaining part (essentially HamiltonianH) including

contributions with gauge fields, which does not involve the τ -derivatives being proportional

to the ein-bein e are separately invariant under the supersymmetry transformations. This

is one of the merits of the first-order formalism. A derivation of these results will be found

in appendix B.

In order to express the properties of these transformation laws from the viewpoint

of canonical formalism, we need Dirac bracket. Here for simplicity, we take account only

the fermionic second-class constraint for traceless fermionic variables. With Π being the

canonical conjugate to Θ, the primary second-class constraint for the traceless fermion

matrices is

Π+
1

2
Θ̄Γ◦ = 0, (ΠP− = Π) (4.43)

satisfying the Poisson bracket algebra expressed in a component form25

{ΠA
α +

1

2
(Θ̄AΓ◦)α,Π

B
β +

1

2
(Θ̄AΓ◦)β}P = (Γ0Γ◦P−)αβδ

AB, (4.44)

where we have denoted the spinor indices by α,β, . . . ,. The indices A,B, . . . refer to the

components with respect to the traceless spinor matrices using an hermitian orthogonal

25Note that {ΠA
α ,Θ

B
β }P = (P−)βαδ

AB . Then, {ΠA
α , (Θ̄

BΓ◦)β}P = δAB(P−)γα(Γ
0Γ◦)γβ =

δAB(Γ0Γ◦P−)βα = δAB(PT
−Γ0Γ◦)βα, due to (Γ0Γ◦)βα = (Γ0Γ◦)αβ .
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Global (kinematical) susy:

action is chosen to be
∫

dτP◦µΘ̄◦Γ
µdΘ◦
dτ

, (4.2)

which is obtained by making a replacement dXµ
◦

dτ → dXµ
◦

dτ +Θ̄◦Γµ dΘ◦
dτ from the center-of-mass

part of the bosonic Poincaré integral. Under the usual rigid super translation

δεΘ◦ = −ε, (4.3)

together with the requirement

δεP
µ
◦ = 0, (4.4)

the action is invariant by assuming the transformation law for the bosonic center-of-mass

coordinates as

δεX
µ
◦ = ε̄ΓµΘ◦, (4.5)

since

δε
(dXµ

◦
dτ

+ Θ̄◦Γ
µdΘ◦
dτ

)
= 0, (4.6)

which is consistent with the first order equations of motion.

Under the assumption that all the other variables not exhibited above are inert with

respect to the rigid super transformation, it is clear that the existence of these fermionic

center-of-mass degrees of freedom does not spoil any of symmetry properties introduced

in previous sections, provided that the remaining matrix part of the action decouples from

Xµ
◦ ,Θ◦ and Pµ

M. This ensures that the first-order equations of motion for the canonical

pairs (Xµ
◦ , P

µ
◦ ) and (Xµ

M, Pµ
M) are of the following form, reflecting conservation laws and

the passive nature of the associated cyclic variables,

dPµ
◦

dτ
= 0, (4.7)

1

e

(DXµ
◦

Dτ
+ Θ̄◦Γ

µdΘ◦
dτ

)
= Pµ

◦ − fµ, (4.8)

dXµ
M

dτ
= 0, (4.9)

1

e

DPµ
M

Dτ
= gµ, (4.10)

where the unspecified functions fµ and gµ are contributions from the remaining part of

action and do not depend on these passive variables themselves. It should also be mentioned

that the scale dimensions of the fermion center-of-mass variables are

Θ◦ → λ1/2Θ◦, ε → λ1/2ε. (4.11)

The equation of motion for the fermionic center-of-mass spinor is then

P◦ · Γ
dΘ◦
dτ

= 0. (4.12)
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Generic states obey the massive representation of  
dimension        , being many body states composed of  
11d basic graviton multiplets.  

For generic case with non-vanishing effective mass square −P 2
◦ > 0, this leads to a conser-

vation law

dΘ◦
dτ

= 0. (4.13)

In general, the quantum states consist of fundamental massive super-multiplets of dimen-

sion 216.

We here briefly touch the canonical structure of the fermionic center-of-mass variables.

From the above action, there is a primary second-class constraint,

Π◦ + Θ̄P◦ · Γ = 0, (4.14)

satisfying a Poisson bracket relation

{Π◦α + (Θ̄P◦ · Γ)α,Π◦β + (Θ̄P◦ · Γ)β}P = 2(Γ0P◦ · Γ)αβ , (4.15)

where Π◦ is canonically conjugate to Θ◦ and α,β, . . . are spinor indices. Correspondingly,

the Poisson bracket must be replaced by Dirac bracket, which is also required to render

the canonical structure supersymmetric. We give a brief account of this topic in appendix

A.

In the limit of light-like center-of-mass momentum P 2
◦ = 0, a one-half of the primary

constraints (4.14) becomes first class because of the existence of zero eigenvalues for the

Dirac operator P◦ · Γ, and the fermionic equations of motion have a redundancy. In the

present work, we will not elaborate on remedying this complication, by assuming generic

massive case. Physically, this is allowed since the system, describing a general many-body

system with massless gravitons, has continuous mass spectrum without mass gap. When we

have to deal with the light-like case, we can always consider a slightly different state with

a small but non-zero center-of-mass by adding soft gravitons propagating with a non-zero

small momentum along directions transverse to the original states.

As is well known, the singularity at P 2
◦ = 0 is associated with the emergence of a local

symmetry, called Siegel (or “κ”-) symmetry [19],

δκΘ◦ = P◦ · Γκ, δκX
µ
◦ = −Θ̄◦Γ

µδκΘ◦, (4.16)

with arbitrary spinor function κ(τ).19 This allows us to eliminate a half of components

of Θ◦ by a suitable redefinition of Xµ
◦ , and hence the super-multiplets are shorten to

216/2 = 28 = 256 dimensions (or to half-BPS states). This coincides with the dimension

of graviton super-multiplet in 11 dimensions which constitutes the basic physical field-

degrees of freedom of 11 dimensional supergravity. It should be noted, however, that

generic many-body states with time-like center-of-mass momenta composed of massless

short multiplets obey “longer” massive representations. For instance, a generic two-body

scattering state of gravitons with −P 2
◦ > 0 would constitute a massive multiplet of 28×28 =

19The action is invariant, under the condition M2 = 0 (which holds identically in the trivial case N = 1),

by adjoining the transformation of ein-bain δκe = −4 dΘ̄◦
dτ κ. Of course, the expression of the effective mass

square is to be extended by including the contribution of traceless fermionic matrices, as discussed below.
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Supersymmetry



❖ It is a straightforward task to quantize this system in a 
manifestly covariant fashion, including fermions, thanks to 
the presence of the M-variables, using, say, the BFV 
formalism with propagating gauge fields which enable us to 
eliminate all the Gauss (and second-class) constraints. 

❖ What about non-perturbative aspects ?

The situation may be somewhat different from ordinary local  
field theories; the Matrix theory is intrinsically a configuration-space 
and non-local formulation of many-body systems of stable D0 
branes.  

In a sense, “Vacuum” is assumed to be trivial, no vacuum 
polarization. There is, however, some subtlety in the limit of             . 
But the spectrum is continuous, we can always add soft gravitons 
such that we have states with non-vanishing squared mass.
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We will shortly see that the conserved auxiliary vector Xµ

M plays a
fundamental role of fixing M-theory scales as reviewed in the first part of
this lecture. It also plays a crucial role in realizing supersymmetry in a
most economical manner in our covariant formulation of Matrix theory.

10. The action of covariantized Matrix theory: bosonic part

Now we are in a position to write down the (bosonic part of the) action of
our covariant Matrix theory:

Aboson =

Z
d⌧

h
P� ·

DX�
D⌧

+ PM · dXM

d⌧
+Tr

⇣
P̂ · DX̂

D⌧

⌘

� e

2N
P 2
� � e

2
Tr(P̂ � P�K)2 +

e

12

⌦
[Xµ, X⌫ , X�][Xµ, X⌫ , X�]

↵i
.

(47)

The relative normalization between the kinetic momentum part and the
last potential term is actually arbitrary, since it can be freely changed by
redefinitions, (XM, PM) ! (⇢Xµ

M, ⇢�1Pµ

M), (B,B) ! ⇢�1(B,B), keeping
other terms intact. This form of the bosonic action is characterized by the
following four kinds of symmetries.

(1) Local reparametrization invariance with respect to ⌧ .
(2) Global translation invariance with respect to Xµ

� ! Xµ

� +cµ and Pµ

M !
Pµ

M + bµ.
(3) Global scaling symmetry (37) under ⌧ ! �2⌧ .
(4) Gauge symmetries under �H + �L + �Y + �w.

The local symmetries (1) and (4) give constraints. The Gauss constraints
corresponding to the latter are already explicated in the previous section.
The mass-shell condition corresponding to (1) is

P 2
� +M2

boson ⇡ 0 (48)

with the e↵ective squared-mass

M2
boson = NTr(P̂ � P�K)2 � N

6

⌦
[Xµ, X⌫ , X�][Xµ, X⌫ , X�]

↵
, (49)

where the equality is valid only in conjunction with the Gauss-law con-
straints (43)⇠(46). This is indicated by the symbol ⇡: remember that,
when a variation of the ein-bein e(⌧) is made, there are contributions from
the covariant derivatives, involved in the generalized Poincaré invariant,
which are linear with respect to all the gauge fields and consequently are
linear combinations of the Gauss constraints. It is to be noted that in the
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Concluding Discussions



Hopefully, the present covariant re-formulation of Matrix theory 
would be useful as an intermediate step toward M-theory. 

Many issues remain to be clarified:

    Remaining problems and future prospects

❖ dynamics (& dualities) of various branes in the large N
❖ background dependence and/or independence

❖ covariantization of (& connection to) Matrix-string theory

❖ inclusion of anti-D0 branes, SSB of supersymmetires
and so forth…..

❖ connection to ABJM, …. and also to type IIB,…. 

The last issue actually suggests the limitation  
of the present Matrix-theory approach !  
It describes only a special sector of M-theory.

❖ correspondence with 11d supergravity



Ultimately, we should develop something like  
field theory of D-branes (and anti-D-branes) 

Introduce a field operator that allows us to go back and forth 
among Hilbert spaces with all the different Ns in the Fock space of 
D-branes

18

We can achieve a second quantization of this system by embedding the matrices into an (infinite) array
of infinite-dimensional complex vectors (z1 = x1 + iy1, z2 = x2 + iy2, . . .) as

1 2 3 4 1234

R

R

R

R

R

R

R

R

4x4 Hermitian matrix array of 4 complex vectors

CC

C

C

C

C

• D-brane field (suppressing time variable) : φ−[z, z], φ+[z, z]

• They act on the D-particle Fock space as (symbolically)

φ+ : |0⟩ → φ+[z(1), z(1)]|0⟩ → φ+[z(2), z(2)]φ+[z(1), z(1)]|0⟩ → · · ·

φ− : 0 ← |0⟩ ← φ+[z(1), z(1)]|0⟩ ← φ+[z(2), z(2)]φ+[z(1), z(1)]|0⟩ ← · · ·

Space-Time Uncertainty and Approaches to D-Brane ... 9

components of the infinite dimensional coordinate vector (z, z̄) = {z1, z̄1, z2, z̄2, . . .}
for each D-particle.

Thus we define creation, φ+[z, z̄], and annihilation, φ−[z, z̄], operators on the
base space of an infinite-dimensional vector space consisting of (zn, z̄n) with n =
1, 2, 3, .... The process of creating and annihilating a D-particle must be defined
conceptually (time being suppressed) as

φ+ : |0⟩ → φ+[z(1), z(1)]|0⟩ → φ+[z(2), z(2)]φ+[z(1), z(1)]|0⟩ → · · · ,

φ− : 0 ← |0⟩ ← φ+[z(1), z(1)]|0⟩ ← φ+[z(2), z(2)]φ+[z(1), z(1)]|0⟩ ← · · · .

Pictorially this is illustrated in Fig. 2.

Fig. 2. The D-particle coordinates and the open strings mediating them are denoted by blobs
and lines connecting them, respectively. The real lines are open-string degrees of freedom which
have been created before the latest operation of the creation field operator, while the dotted
lines indicate those created by the last operation. The arrows indicate the operation of creation
(from left to right) and annihilation (from right to left) of D-particles.

The presence of the dummy components, the feature (a) above, is taken into
account by assuming a set of special projection conditions, such as

∂
y
(1)
1

φ+[z(1), z(1)]|0⟩ = 0, ∂
z
(1)
k

φ+[z(1), z(1)]|0⟩ = 0 for k ≥ 2,

∂
y
(2)
2

φ+[z(2), z(2)]φ+[z(1), z(1)]|0⟩ = 0, ∂
z
(2)
k

φ+[z(2), z(2)]φ+[z(1), z(1)]|0⟩ = 0 for k ≥ 3.

The feature (b), a continuous quantum statistics corresponding to gauge invariance,
is taken into account by assuming symmetry constraints such as

φ+[(UXU−1)12, (UXU−1)21, (UXU−1)22]φ+[(UXU−1)11]|0⟩

= φ+[z(2), z(2)]φ+[z(1), z(1)]|0⟩
as a natural extension of (5.2). The action of the annihilation operator is defined as

φ−[z, z]|0⟩ = 0,

φ−[z, z]φ+[z(1), z(1)]|0⟩ = δ(x1 − x(1)
1 )δ(y1)

∏

k≥2

δ(zk)|0⟩,

φ−[z, z]φ+[z(2), z(2)]φ+[z(1), z(1)]|0⟩

=
∫

dUδ2(z1 − (UXU−1)12))δ(x2 − (UXU−1)22)
( ∏

k≥3

δ(zk)
)

φ+[(UXU−1
11 ]|0⟩

which are again natural extensions of the ordinary one (5.3) corresponding to the
usual discrete statistical symmetry. Actually, the algebra of these field operators

We will end up with a peculiar non-local field theory on 
an infinite dimensional complex vector (super) space 
as the base space.   
    Physical objects = bi-linears of the fields (“currents”)

For preliminary attempts toward such a direction,  
T.Y., PTP. 118, 135(2007)[arXiv:0705.1960, also 0804.0297];   
also JHEP 12(2005)028[arXiv:hep-th/0510114].
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     Remarks on the significance of string/M theory from 
a historical perspective in the long run

Epilogue

International Conference of Theoretical Physics, Kyoto & Tokyo (1953)

R. P. Feynman,  
    responding to S. Sakata’s question about general (or “philosophical”) 
    status of field theories,  in session “Field Theory A. Non-Local Theory”, 
    chaired by  A.Pais,   



“I would like to say why I think there is some interest in the non-
local field theories, because they have been demolished  
temporarily. The difficulty of obtaining a non-local field theory is 
amazing. I ask “Why is it so difficult?” If we take the principle of 
relativity, and the principle of superposition of amplitudes, that is 
quantum mechanics, and put them together, we can not contain in 
the system an arbitrary function. Now non-relativistically we can  
put in any potential, but relativistically we can not.  

Only if we get some crazy theory, (it does not make any difference 
what) but some consistent one which is able to do that, will we 
discover perhaps some fundamental idea has changed. Maybe that 
would give a clue about what it is. 

  So one reason why the non-local theory attempts are interesting  
is to try to find out why it is so hard to do.”



“So long as no one has new concepts, which appear to 
have sufficient constructive power, mere doubt remains; 
that is, unfortunately, my own situation. Adhering to the 
continuum originates with me not in a prejudice, but 
arises out of the fact that I have been unable to think up 
anything organic to take place. “

Einstein had said something similar:

comment on a proposal by mathematician K. Menger, that, for 
geometrization of the physics of the microcosm, one alternative to smooth 
Riemann spaces is a geometry where points are not primary entities, or a 
theory in which lumps are undefined concepts, whereas points appear as 
the results of limiting or intersectional process applied to these lumps.

( reminiscent of Yukawa’s proposal, “elementary domains”, in the late 60th )

in Reply to Criticisms, 1949



Of course, through the development of string theory from the early 
1970s to the present, we have had incomparably richer experiences 
and deeper insights into non-local field theories than the early 1950s.  

In my opinion, 
String/M theory 

(together with associated matrix models)
 is indeed a “crazy” but “consistent” theory, 

“which is able to do that” and has “sufficient 
constructive power.” 

Surely, it gives “a clue about what it is”. 

Conjecture: 
 the non-locality of string theory should be unified with the non-locality 

of a different kind, that is intrinsic to the general concept of 
quantum mechanical states (through quantum entanglements?). 



Do we have really “fundamental ideas”?

Do we have clues to experimental verification?

It seems unfortunate that, in recent years, new development of 
string/M  theory proper seems rather scarce. 
But I hope that people would come back to the real issues of string/
M theory, in the not-so distant future. 

Thanks !


