# ランダムユニタリー行列の準位間隔比分布

有限 N 補正・ $\zeta$  零点

#### 西垣 真祐 島根大

SMN, "Distributions of consecutive level spacings of CUE and their ratio" PTEP 2025, 000000 = 2507.10193 [math-ph]

SMN, "Distributions of consecutive level spacings of GUE and their ratio"

PTEP 2024, 081A01 = 2407.15704 [math-ph]

⇒ 最近の注目論文から 日本物理学会誌 2025/1

⇒ JPS Hot Topics 5 (2025) 014 [YouTube 動画]

離散的手法による場と時空のダイナミクス 2025

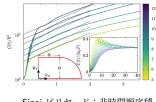
- 🕕 背景/動機
  - 量子カオス性の指標 ランダム行列の分類
  - 遷移準位統計
- ギャップ比分布 2 DPPのJánossy密度
  - 円周型ユニタリ集団
  - ギャップ確率 Jánossy密度
  - Jánossy密度:CUE<sub>-∞</sub>
- ③ ギャップ比分布
  - Tracy-Widom法
  - Jánossy密度: CUE\_N
  - ギャップ比分布: CUE\_N
- 💶 Riemann ζ 零点 て関数とRMT
  - て関数と量子力学 • 零点間隔比分布
  - 有限サイズ補正

# ❶ 背景/動機

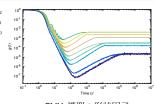
# 量子カオス性の指標

量子カオス = 古典的非可積分系の量子化  $|\Psi(t)\rangle = U(t)|\Psi_0\rangle$  or  $H|n\rangle = E_n|n\rangle$ 

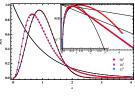
- 非時間順序積  $\mathcal{C}(t) = \langle |[Q(t), P(0)]|^2 \rangle \propto e^{2\lambda t}$ , 極 skipping  $G_{\rho\rho}^{\mathrm{R}}(\omega = i\lambda, k = i\frac{\lambda}{n}) \sim \frac{0}{0}$
- Krylov 複雑度  $C(t) = \sum_n n |\langle K_n | \Psi(t) \rangle|^2$ ,  $\{|K_n\rangle\} = \{H^n | \Psi_0\rangle\}_{n>0}$  の GS 直交化
- 準位統計: Wigner (ランダム行列) ↔ Poisson as カオス ↔ 局在
  - ・形状因子/相関関数  $g(t) = \langle \sum e^{i(E_n E_m)t} \rangle = \int d\epsilon e^{i\epsilon t} R_2(\epsilon), \ \epsilon_{nm} = E_n E_m$
  - ・準位間隔分布 P(s),  $s_n = \bar{\rho}(E_n)(E_{n+1} E_n) \leftarrow 規格化 unfolding が必要 ↑$



Sinai ビリヤード:非時間順序積 García-Mata et al. 2022



SYK 模型:形状因子 Cotler et al. 2016



Anderson 模型:準位間隔分布 Nishigaki 1999

#### Riemann 対称空間 Cartan 1926

| class | Lie 群/極大部分群                                                               | $\mathcal{T}$ | $\mathcal{C}$ | $\mathcal{P}$ | β |
|-------|---------------------------------------------------------------------------|---------------|---------------|---------------|---|
| Α     | $\mathrm{U}(N)$                                                           |               |               |               | 2 |
| ΑI    | $\mathrm{U}(N)/\mathrm{O}(N)$                                             | +             |               |               | 1 |
| AII   | $\mathrm{U}(2N)/\mathrm{Sp}(N)$                                           | _             |               |               | 4 |
| BD    | $\mathrm{O}(N)$                                                           |               | +             |               | 2 |
| C     | $\mathrm{Sp}(N)$                                                          |               | _             |               | 2 |
| AIII  | $U(N + N')/U(N) \times U(N')$                                             |               |               | +             | 2 |
| BDI   | $O(N + N')/O(N) \times O(N')$                                             | +             | +             | +             | 1 |
| CII   | $\operatorname{Sp}(N+N')/\operatorname{Sp}(N)\times\operatorname{Sp}(N')$ | -             | _             | +             | 4 |
| CI    | $\operatorname{Sp}(N)/\operatorname{U}(N)$                                | +             | _             | +             | 1 |
| DIII  | $\mathrm{O}(2N)/\mathrm{U}(N)$                                            | _             | +             | +             | 4 |

例:AI 
$$U(N)/O(N) \ni \{U \sim UO\} \mapsto \mathcal{U} = UU^T \in$$
対称  $U(N)$ 

対合対称性 
$$TUT^{-1} = U^{\dagger} (T^2 = +1)$$
,  $CUC^{-1} \neq U$ ,  $PUP^{-1} \neq U^{\dagger}$   $T: 反ユニタリ$   $C: 反ユニタリ$   $P: ユニタリ$ 

不変測度 
$$d\mu(\mathcal{U}) = d\mu(\mathcal{V}\mathcal{U}\mathcal{V}^T) \propto \prod_i d\theta_i \prod_{i \in I} |e^{i\theta_i} - e^{i\theta_k}|^1$$

#### Topological 絶縁/超伝導体 H

#### 測定+ランダム時間発展 K Kawabata et al 2025

| class | d = 0          | 1              | 2              | 3              | 4              | 5              | 6              | 7              | $\mathcal{T}$ | $\mathcal{C}$ | $\mathcal{P}$ |
|-------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|---------------|---------------|
| Α     | $\mathbb{Z}$   |                | $\mathbb{Z}$   |                | $\mathbb{Z}$   |                | $\mathbb{Z}$   |                |               |               |               |
| AIII  |                | $\mathbb{Z}$   |                | $\mathbb{Z}$   |                | $\mathbb{Z}$   |                | $\mathbb{Z}$   |               |               | +             |
| Al    | $\mathbb{Z}$   |                |                |                | $2\mathbb{Z}$  |                | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | +             |               |               |
| BDI   | $\mathbb{Z}_2$ | $\mathbb{Z}$   |                |                |                | $2\mathbb{Z}$  |                | $\mathbb{Z}_2$ | +             | +             | +             |
| D     | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb Z$    |                |                |                | $2\mathbb{Z}$  |                |               | +             |               |
| DIII  |                | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |                |                |                | $2\mathbb{Z}$  | _             | +             | +             |
| AII   | $2\mathbb{Z}$  |                | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |                |                |                | _             |               |               |
| CII   |                | $2\mathbb{Z}$  |                | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |                |                | _             | _             | +             |
| С     |                |                | $2\mathbb{Z}$  |                | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |                |               | _             |               |
| CI    |                |                |                | $2\mathbb{Z}$  |                | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | +             | _             | +             |

Schnyder-Ryu-Furusaki-Ludwig 2008 (被引用数  $\simeq 4100$ ), Kitaev 2009 (被引用数  $\simeq 2900$ )

$$H_d(\mathbf{k}) \mapsto H_{d+1}(\mathbf{k}, k) = \begin{cases} H_d(\mathbf{k}) \otimes \sigma_x \cos k + \mathbb{I} \otimes \sigma_y \sin k & : d \text{ if } \\ P_d(\mathbf{k}) & \cos k + \mathbb{I} \otimes \sigma_z \sin k & : d \text{ if } \end{cases} \approx \text{Bott 1956}$$

# 円周型ランダム行列 { $\mathcal{U}$ } $\stackrel{\mathrm{def}}{=}$ RSS 上の一様分布 Zirnbauer 1996

| class | Lie 群/極大部分群                                                               | $\pm \theta_i$ | a           | b         | β |
|-------|---------------------------------------------------------------------------|----------------|-------------|-----------|---|
| CUE   | $\mathrm{U}(N)$                                                           | N              |             |           | 2 |
| COE   | $\mathrm{U}(N)/\mathrm{O}(N)$                                             | N              | 並進不変        |           | 1 |
| CSE   | $\mathrm{U}(2N)/\mathrm{Sp}(N)$                                           | N              |             |           | 4 |
| BD    | $\mathrm{O}^{\pm}(N_{e,o})$                                               | Y              | $\mp 1/2$   | $\mp 1/2$ | 2 |
| C     | $\operatorname{Sp}(N)$                                                    | Y              | 1/2         | 1/2       | 2 |
| chCUE | $U(N + N')/U(N) \times U(N')$                                             | Y              | $\nu$       | 0         | 2 |
| chCOE | $O(N + N')/O(N) \times O(N')$                                             | Y              | $\nu-1$     | -1        | 1 |
| chCSE | $\operatorname{Sp}(N+N')/\operatorname{Sp}(N)\times\operatorname{Sp}(N')$ | Y              | $\nu + 1/2$ | 1/2       | 4 |
| CI    | $\operatorname{Sp}(N)/\operatorname{U}(N)$                                | Y              | 0           | 0         | 1 |
| DIII  | $\mathrm{O}^+(2N_{e,o})/\mathrm{U}(N_{e,o})$                              | Υ              | 0, 1/2      | 0         | 4 |

# 円周型ランダム行列 { $\mathcal{U}$ } $\stackrel{\mathrm{def}}{=}$ RSS 上の一様分布 Zirnbauer 1996

| class | Lie 群/極大部分群                                                               | $\pm \theta_i$ | a           | b         | β |
|-------|---------------------------------------------------------------------------|----------------|-------------|-----------|---|
| CUE   | $\mathrm{U}(N)$                                                           | N              |             |           | 2 |
| COE   | $\mathrm{U}(N)/\mathrm{O}(N)$                                             | N              | 並進不変        |           | 1 |
| CSE   | $\mathrm{U}(2N)/\mathrm{Sp}(N)$                                           | N              |             |           | 4 |
| BD    | $\mathrm{O}^{\pm}(N_{e,o})$                                               | Y              | $\mp 1/2$   | $\mp 1/2$ | 2 |
| C     | $\operatorname{Sp}(N)$                                                    | Y              | 1/2         | 1/2       | 2 |
| chCUE | $U(N + N')/U(N) \times U(N')$                                             | Y              | $\nu$       | 0         | 2 |
| chCOE | $O(N + N')/O(N) \times O(N')$                                             | Y              | $\nu-1$     | -1        | 1 |
| chCSE | $\operatorname{Sp}(N+N')/\operatorname{Sp}(N)\times\operatorname{Sp}(N')$ | Y              | $\nu + 1/2$ | 1/2       | 4 |
| CI    | $\operatorname{Sp}(N)/\operatorname{U}(N)$                                | Y              | 0           | 0         | 1 |
| DIII  | $\mathrm{O}^+(2N_{e,o})/\mathrm{U}(N_{e,o})$                              | Υ              | 0, 1/2      | 0         | 4 |

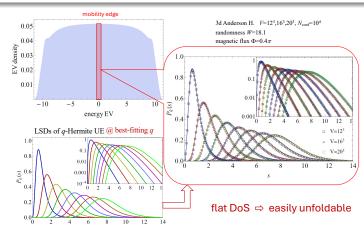
$$d\mu(\mathcal{U}) \propto \prod_{i=1}^N d\theta_i \cdot \prod_{j < k}^N |\mathrm{e}^{i\theta_j} - \mathrm{e}^{i\theta_k}|^{\beta}$$
 (nonchiral)  $\mathsf{C}\beta\mathsf{E}_N$ 

並進不変な chaotic スペクトルの唯三の模型  $\stackrel{?}{\Rightarrow}$  有限 N 補正も記述?

# 遷移準位統計

# Anderson 強束縛模型 $H = (i\nabla + \mathbf{A})^2 + V_{\mathrm{random}}^{\mathrm{i.i.d.}}(x)$

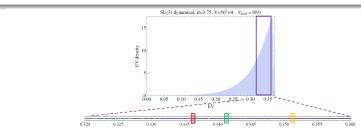
Nishigaki 1999; 2017 (unpub)

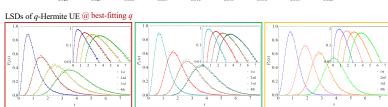


# 遷移準位統計

## QCD Dirac 演算子 (高温相) $D = \gamma_{\mu}(i\partial_{\mu} + A_{\mu}(x))$

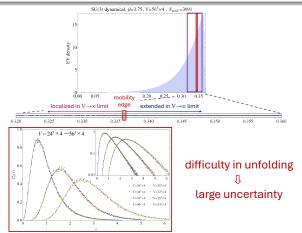
Nishigaki et al. 2017 (unpub)





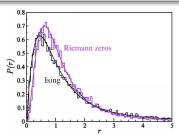
## QCD Dirac 演算子 (高温相) $D = \gamma_{\mu}(i\partial_{\mu} + A_{\mu}(x))$

Nishigaki et al. 2017 (unpub)



# ギャップ比分布

- 準位統計:Wigner (ランダム行列) ↔ Poisson as カオス ↔ 局在
  - ・形状因子/相関関数  $g(t) = \langle \sum_{n,m} e^{i(E_n E_m)t} \rangle = \int d\epsilon \, e^{i\epsilon t} R_2(\epsilon), \ \epsilon_{nm} = E_n E_m$
  - ・準位間隔分布 P(s) ,  $s_n := \bar{\rho}(E_n)(E_{n+1} E_n)$   $\checkmark$  unfolding 不要
  - ・準位間隔比分布  $P_{\mathbf{r}}(r)$  ,  $r_n := \frac{E_{n+1} E_n}{E_n E_{n-1}}$  or  $\tilde{r}_n := \min(r_n, r_n^{-1}) \le 1$



縦横磁場 Ising 鎖, Riemann C 零点:ギャップ比分布

Oganesyan-Huse 2007, Atas et al. 2013

# ギャップ比分布: Wigner 仮説

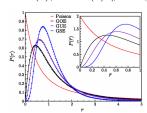
Atas-Bogomolny-Giraud-Roux 2013  $Ceta E_{N=\infty} = Geta E_{N=\infty} o Geta E_{N=3}$  で近似

 $G\beta E_3$ :  $JPD(x_1, x_2, x_3) \propto e^{-x_1^2 - x_2^2 - x_3^2} |(x_1 - x_2)(x_1 - x_3)(x_2 - x_3)|^{\beta}$ 

$$\Rightarrow P_{\mathbf{r}}^{\text{Wig}}(r) = \iiint_{x_1 < x_2 < x_3} dx_1 dx_2 dx_3 \text{ JPD}(x_1, x_2, x_3) \delta\left(r - \frac{x_3 - x_2}{x_2 - x_1}\right)$$

$$= C_{\beta} \frac{(r + r^2)^{\beta}}{(1 + r + r^2)^{1 + \frac{3}{2}\beta}} \qquad [+ 経験則的補正]$$

$$\Rightarrow \langle \tilde{r} \rangle = 0.5307(1), 0.5996(1), 0.6744(1) \; (\beta = 1, 2, 4) \quad \Rightarrow \; \#被引用数 = 1230$$



多くの文献は  $GUE_3$  近似を「T 不変でない量子カオス系の予想値」として引用

 $\cdots 
ightarrow$  本研究の目的: ${f CUE}_N$  の厳密解  $\Rightarrow$   ${f large-}N$  極限 + 有限 N 補正の評価

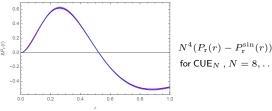
# 結果予告:CUE™

核 
$$K(\theta,\theta')\big|_{\theta=\frac{2\pi}{N}x} = K_{\sin}(x,x') + \frac{1}{N^2}K^{(2)}(x,x') + \frac{1}{N^4}K^{(4)}(x,x') + \cdots$$

準位間隔分布 
$$P(\theta)|_{\theta=\frac{2\pi}{N}s} = P^{\sin}(s) + \frac{1}{N^2}P^{(2)}(s) + \frac{1}{N^4}P^{(4)}(s) + \cdots$$

隣接準位間隔比分布 
$$P_{\rm r}(r) = P_{\rm r}^{\sin}(r) + \frac{1}{N^2} P_{\rm r}^{(2)}(r) + \frac{1}{N^4} P_{\rm r}^{(4)}(r) + \cdots$$

#### would-be leading 補正=0



# ② DPPのJánossy密度

# 円周型ユニタリ集団

#### CUENの固有位相の連結分布

$$\begin{split} \mathsf{JPD}(\theta_0,\dots,\theta_{N-1}) & \propto \prod_{0 \leq j < k \leq N-1} \left| \mathrm{e}^{i\theta_j} - \mathrm{e}^{i\theta_k} \right|^2 \\ & = \det_{j,\ell} [\mathrm{e}^{i\ell\theta_j}] \det_{k,\ell} [\mathrm{e}^{-i\ell\theta_k}] \\ & = \det_{j,k} \left[ \sum_{\ell=0}^{N-1} \mathrm{e}^{i\ell(\theta_j-\theta_k)} \right] \propto \frac{1}{N!} \det \left[ \frac{1}{2\pi} \frac{\sin(N(\theta_j-\theta_k)/2)}{\sin((\theta_j-\theta_k)/2)} \right]_{j,k=0}^{N-1} \\ & \Rightarrow R_p(\theta_0,\dots,\theta_{p-1}) = \det[K(\theta_j,\theta_k)]_{j,k=0}^{p-1} \quad \text{by} \quad \int_{-\pi}^{\pi} d\theta \, K(\theta,\theta) = N, \; K*K = K \\ \Rightarrow \mathrm{Prob}(\mathsf{no}\; \mathsf{EV}\; \mathsf{in}\; I) = \; \mathrm{Det}\left(\mathbb{I} - \pmb{K}|_I\right) \qquad (\pmb{K}|_I f)(\theta) = \int_I d\theta' \, K(\theta,\theta') f(\theta') \end{split}$$

#### 行列式点過程 (連続的 DPP)

# ギャップ確率

#### 離散的 DPP



$$\operatorname{Prob}(n_1, \dots, n_p$$
に粒子あり) =  $\det[K(n_j, n_k)]_{j,k=1}^p$  ↓

 $\operatorname{Prob}(n に粒子がない) = 1 - K(n, n)$ 

n と n' に粒子がある引き過ぎを補正

Prob
$$(n, n'$$
に粒子がない) = 1 -  $K(n, n)$  -  $K(n', n')$  +  $K(n, n)$   $K(n, n')$   $K(n', n')$  =  $\begin{pmatrix} 1 - K(n, n) & -K(n, n') \\ -K(n', n) & 1 - K(n', n') \end{pmatrix}$ 

Prob(n, n', n''に粒子がない) = · · ·

$$\operatorname{Prob}(集合 \ I \ \mathtt{に粒子がない}) \ = \det \left( \mathbb{I} - [K(n,n')]_{n,n' \in I} \right)$$

$$\downarrow$$
 連続極限  $\theta := n\epsilon, \ \epsilon \to 0$ 

$$\operatorname{Prob}(区間 I に固有値がない) = \operatorname{Det}(\mathbb{I} - \mathbf{K}|_{I})$$

# ギャップ確率 as Painlevé T

#### 連続的 DPP

 $\operatorname{Prob}\left( \operatorname{区間} I \operatorname{ C固有値がない} \right) = \operatorname{Det}(\mathbb{I} - \mathbf{K}|_{I})$ 

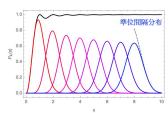
$$K|_{I}$$
: 積分演算子  $(K|_{I}f)(\theta) = \int_{I} d\theta' K(\theta, \theta') f(\theta')$ 

局所的 large 
$$N$$
 極限  $\varphi_k(\theta) = \mathrm{e}^{ik\theta} \big|_{\theta = \frac{2\pi}{N}x}^{k \simeq N} \to \mathrm{e}^{2\pi i x} \longleftrightarrow$  広範な普遍性

$$K(\theta, \theta') = \frac{\sin(N(\theta - \theta')/2)}{2\pi \sin((\theta - \theta')/2)} \rightarrow \frac{\sin \pi(x - x')}{\pi(x - x')} := K_{\sin}(x, x')$$

Jimbo-Miwa-Môri-Sato 1980: IMD $ightarrow \sigma$ -PV

$$Det (\mathbb{I} - \mathbf{K}_{\sin}|_{[0,s]}) = e^{-\int_0^{\pi s} (dt/t)\sigma(t)}, (t\sigma'')^2 + 4(t\sigma' - \sigma)(t\sigma' - \sigma + \sigma'^2) = 0$$



# Jánossy 密度

#### 離散的 DPP:1 粒子を **m** に固定

- 他の粒子は  $\mathbf{m}$  を避ける :  $\tilde{K}(n, \mathbf{m}) = \tilde{K}(\mathbf{m}, n') = 0$
- 射影性, 規格化を満たす:  $ilde{\pmb{K}} = \left[ ilde{K}(n,n')\right]_{n,n' \neq m} = ilde{\pmb{K}} \cdot ilde{\pmb{K}}, \quad {
  m tr} \, ilde{\pmb{K}} = N-1$
- 条件つき連結分布 (m は占有済) に対する核になる:

$$\begin{split} \tilde{R}_{1}(n|\mathbf{m}) &= \frac{R_{2}(n,\mathbf{m})}{R_{1}(\mathbf{m})} = \frac{K(n,n)K(\mathbf{m},\mathbf{m}) - K(n,\mathbf{m})K(\mathbf{m},n)}{K(\mathbf{m},\mathbf{m})} = \tilde{K}(n,n) \\ \tilde{R}_{2}(n_{1},n_{2}|\mathbf{m}) &= \frac{R_{3}(n_{1},n_{2},\mathbf{m})}{R_{1}(\mathbf{m})} \\ &= \frac{K(n_{1},n_{1})K(n_{2},n_{2})K(\mathbf{m},\mathbf{m}) \pm (5\,\,\mathrm{I})}{K(\mathbf{m},\mathbf{m})} = \det\left[\tilde{K}(n_{i},n_{j})\right]_{i,j=1}^{2}, \,\, \text{etc} \end{split}$$

# Jánossy 密度

#### Lemma (条件付きギャップ確率)

1 粒子 @ m がある前提で I が他の粒子を含まない確率は

$$\tilde{J}_1(I|\boldsymbol{m}) = \det(\mathbb{I} - \tilde{\boldsymbol{K}}|_I) , \quad \tilde{\boldsymbol{K}}|_I = \left[\tilde{K}(n,n')\right]_{n,n'\in I}$$

Jánossy 密度: I が 1 粒子 @ m のみを含む確率

$$J_1(I; \boldsymbol{m}) = R_1(\boldsymbol{m}) \cdot \det(\mathbb{I} - \tilde{\boldsymbol{K}}|_I)$$

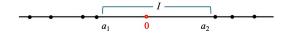
#### ギャップ端の粒子密度

$$J_1\left([s+\delta s,*];t\right) - J_1\left([s,*];t\right) \simeq \partial_s J_1\left([s,*];t\right) \delta s$$

円周型ユニタリ集団 Jánossv密度 Jánossy密度: CUE<sub>-∞</sub>

# Jánossy 密度:CUE、

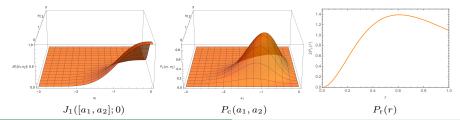
 $J_1([a_1,a_2];0)=\mathrm{Det}(\mathbb{I}- ilde{K}_{\sin}|_{[a_1,a_2]})$  を JMMS-TW 法で評価 Nishigaki 2024 (前回)



#### 隣接準位間隔の連結分布

### 隣接準位間隔比の分布 $\tilde{r}_n$ 比の期待値

$$P_{\rm c}(a_1,a_2) = -\frac{\partial^2 J_1([a_1,a_2];0)}{\partial a_1 \partial a_2} \Rightarrow P_{\rm r}(r) = \int_0^\infty \!\! da \, a \, P_{\rm c}(-ra,a) \, \Rightarrow \, \langle \tilde{r} \rangle = 0.5997504209.$$



# ③ ギャップ比分布

# Tracy-Widom 法

#### **Theorem (Tracy-Widom 1994)**

• 
$$\delta : K(x,y) = \frac{1}{x-y} \left[ \psi^+(x) \ \psi^-(x) \right] \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \psi^+(y) \\ \psi^-(y) \end{bmatrix} = \frac{\Psi(x)^T J \Psi(y)}{x-y}$$

② 2 成分関数  $\Psi(x)$  が有理係数 1 階 LDE を満たす: $\partial_x \Psi(x) = \mathcal{A}(x)\Psi(x)$ ,  $\operatorname{tr} \mathcal{A}(x) = 0$  ならば、 $\operatorname{Det}(\mathbb{I} - K|_{[a_1,a_2]})$  は  $\mathcal{A}(x)$  の係数を含む PDE 系 in  $a_1,a_2$  により決定される

#### Lemma (Nishigaki 2021)

核 K(x,y) が TW 法の適用可能条件を満たすならば, 条件付き核  $\tilde{K}(x,y)$  も満たす

#### **Proof.** 固定された点 t を避ける

$$\tilde{\Psi}(x) = \Psi(x) - \underbrace{\Psi(t) \frac{K(t,x)}{K(t,t)}}_{} := \Omega(x) \Psi(x) \; , \; \Omega(x) = \mathbb{I} - \underbrace{\Psi(t) \Psi(t)^T J}_{} : \underbrace{ \text{ffm SL}(2) }_{} \text{gauge } \underline{\mathfrak{F}} \underline{\mathfrak{F}}_{}$$

により条件付き核は 
$$\tilde{K}(x,y) = rac{ ilde{\Psi}(x)^T J ilde{\Psi}(y)}{x-y}$$
 と表され,

$$\partial_x \tilde{\Psi}(x) = \tilde{\mathcal{A}}(x)\tilde{\Psi}(x)$$
,  $\operatorname{tr} \tilde{\mathcal{A}}(x) = \operatorname{tr} \left\{ \Omega(x)\mathcal{A}(x)\Omega(x)^{-1} + \partial_x \Omega(x) \cdot \Omega(x)^{-1} \right\} = 0$ 

# Jánossy 密度: $CUE_N$

#### **Tracy-Widom recipe**

$$K(\theta,\theta') \propto \frac{\sin\frac{N(\theta-\theta')}{2}}{\sin\frac{\theta-\theta'}{2}} = \mathrm{e}^{i\frac{\theta+\theta'}{2}} \frac{\Psi(\theta)^T J \Psi(\theta')}{\mathrm{e}^{i\theta} - \mathrm{e}^{i\theta'}} \;,\; \Psi(\theta) = \left[ \begin{array}{c} \mathrm{e}^{+i\frac{N}{2}\theta} \\ \mathrm{e}^{-i\frac{N}{2}\theta} \end{array} \right] \quad (前頁から \; x = \mathrm{e}^{i\theta})$$

$$\partial_{\theta}\Psi(\theta)=\left[egin{array}{cc} irac{N}{2} & 0 \ 0 & -irac{N}{2} \end{array}
ight]\Psi(\theta):=\mathcal{A}\Psi(\theta) \ : \ \mathsf{TW}$$
 条件を満たす

 $\downarrow$  1 つの固有値を  $\theta = 0$  に固定

$$ilde{K}( heta, heta') = \mathrm{e}^{irac{ heta+ heta'}{2}}rac{\Psi( heta)^TJ\Psi( heta')}{\mathrm{e}^{i heta}-\mathrm{e}^{i heta'}}\;,\; ilde{\Psi}( heta) = \Omega( heta)\Psi( heta)\;:\;$$
 Lemma から,TW 条件を満たす

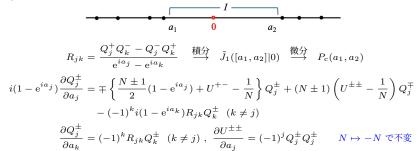
$$\Downarrow I = [a_1, a_2], \ \tilde{K}_I(\theta, \theta') = \tilde{K}(\theta, \theta') \chi_I(\theta')$$
 とすると

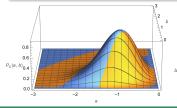
は閉じた PDE 系 in  $a_1, a_2$  をなす

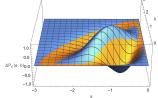
$$\Rightarrow \frac{\partial}{\partial a_i} \operatorname{Tr} \log(\mathbb{I} - \tilde{\boldsymbol{K}}_I) = (-)^{j+1} R_{jj} \quad \Rightarrow \quad \tilde{J}_1([a_1, a_2]|0) = \operatorname{Det} (\mathbb{I} - \tilde{\boldsymbol{K}}_I)$$

# Jánossy密度:CUE<sub>N</sub>

#### **Tracy-Widom PDEs**



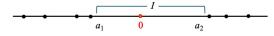




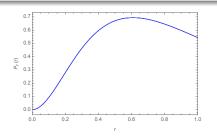
[左図] 隣接準位間隔の連結分布  $P_c(a,b), N=8,16$ 

[右図] 有限 N 補正

# ギャップ比分布: $CUE_N$



$$P_{\rm r}(r) = \iint_{\substack{a_1 < 0 < a_2}} da_1 da_2 \, P_{\rm c}(a_1, a_2) \, \delta(r - |a_1|/a_2)$$



ギャップ比分布: $P_{\mathrm{r}}(r)$ ,  $N=8,\ldots,16$ 



有限 N 補正:  $N^4 \left( P_{\mathbf{r}}(r) - P_{\mathbf{r}}^{\sin}(r) \right)$ 

leading  $\mathcal{O}(N^{-2})$  補正が消失  $\Rightarrow$  ギャップ比分布は高次補正への窓口

# 4 Riemann ζ零点

く関数とRMT く関数と量子力学 零点間隔比分布 有限サイズ補正

# $\zeta$ 関数とRMT

$$\zeta(s) = \prod_{p \ : \ \not\equiv \infty} \frac{1}{1-p^{-s}} = (\Gamma \boxtimes \mathcal{F}) \zeta(1-s) \ , \ \sigma = \max \mathrm{Re}(非自明零点) \in [1/2,1)$$

⇒ # $\{x$ 以下の素数  $\}$  = Li(x) +  $\mathcal{O}(x^{\sigma} \log x)$ 

Riemann 仮説 =1/2

Hilbert-Pólya 予想 ca.1912  $\zeta(\frac{1}{2}+it)\stackrel{?}{=}$  " $\det(t-\hat{H}_{\mathrm{HP}})$ " s.t.  $\hat{H}_{\mathrm{HP}}=\hat{H}_{\mathrm{HP}}^{\dagger}$ 

局所的: Montgomery 予想 1972/Rudnick-Sarnak 予想 1994 (形状因子の ramp 部分のみ証明)

$$\zeta(\frac{1}{2}+it_n)=0 \Rightarrow x_n=\frac{t_n}{2\pi}\log\frac{t_n}{2\pi}$$
 の 2 点相関  $R_2(x-x')$  は  $CUE_\infty=GUE_\infty$  に漸近

局所的: Katz-Sarnak 予想 1997

ルク極限↑ へ

L 関数の最小零点  $L(\frac{1}{2}+it_1,\chi_d)=0$  を  $\chi_d$  について平均した分布は  $\mathbf{C}_{\infty}$ ,  $\mathbf{BD}_{\infty}$  に漸近

大域的: Keating-Snaith 予想 2000

 $\zeta$  関数の [0,T] でのモーメントは  ${\sf CUE}_N$   $(N=\log {T\over 2\pi})$  の特性多項式と本質的に一致

$$\int_0^T \frac{dt}{T} \left| \zeta(\frac{1}{2} + it) \right|^{2k} \stackrel{T \to \infty}{\longrightarrow} a_k \frac{G(k+1)^2}{G(2k+1)} \left( \log \frac{T}{2\pi} \right)^{k^2} \Leftrightarrow \int_{\mathbb{U}(N)} d\mu(U) \left| \det(\mathbb{I} - U) \right|^{2k} \stackrel{N \to \infty}{\longrightarrow} \frac{G(k+1)^2}{G(2k+1)} N^{k^2}$$

# (関数と量子力学

#### Gutzwiller 跡公式

$$\rho(E) = \operatorname{tr} \delta(E - \hat{H}) \xrightarrow{\operatorname{FT}} \sum_{n} \langle n | e^{-it\hat{H}} | n \rangle = \int_{q(t) = q(0)} \mathcal{D}q \, e^{iS[q]}$$

$$\mathsf{CUE}_{\infty}$$

$$N_{\mathrm{fl}}(E) = \int^E \!\! dE' \left( \rho(E') - \bar{\rho}(E') \right) \simeq \frac{1}{\pi} \sum_{p \ : \ \#\mathrm{Minimiz}} \sum_{m=1}^\infty \frac{\sin \left( m S_p(E) - (m\pi/2) \mu_p \right)}{m \sqrt{\mathrm{e}^{m \lambda T_p}}}$$

#### Riemann 明示公式 = "理想的"量子カオス系

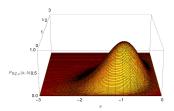
$$\begin{split} N_{\mathrm{fl}}(t) &= \frac{1}{\pi} \mathrm{Im} \log \zeta(\frac{1}{2} + it) = -\frac{1}{\pi} \sum_{p : \frac{\pi}{2} \frac{\pi}{2}} \mathrm{Im} \log (1 - p^{-1/2 - it}) &\stackrel{\exists \hat{H}_{\mathrm{HP}} : \chi \text{-chaotic}}{= -\frac{1}{\pi} \sum_{p : \frac{\pi}{2} \frac{\pi}{2}} \sum_{m = 1}^{\infty} \frac{\sin (m \, t \log p)}{m \sqrt{\mathrm{e}^{m \log p}}} &\stackrel{\uparrow \mathbb{Z}}{\Rightarrow} \mathrm{CUE}_{\infty} \end{split}$$

素周期軌道  $\leftrightarrow$  素数,  $E \leftrightarrow t$ ,  $S_p(E) \leftrightarrow t \log p$ ,  $T_p = \frac{dS_p(E)}{dE} \leftrightarrow \log p$ ,  $\lambda \leftrightarrow 1$  対応

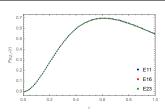
# 零点間隔比分布

 $\zeta$  零点:  $\{\frac{1}{2}+i\gamma_n\mid n\in[N,N+10^{-3}N] \text{ or } [N,N+10^9]\}$  CUE $_\infty$  の結果と肉眼で不可分

| N                     | $\gamma_N$               | $\langle \tilde{r}_n \rangle$ | $\langle \tilde{r}_n^2 \rangle$ | $\langle \tilde{r}_n^3 \rangle$ | $\langle \tilde{r}_n^4 \rangle$ |
|-----------------------|--------------------------|-------------------------------|---------------------------------|---------------------------------|---------------------------------|
| $10^{8}$              | $4.265354 \cdot 10^7$    | .6032357                      | .4168926                        | .3133507                        | .2489623                        |
| $10^{9}$              | $3.718702 \cdot 10^8$    | .6021928                      | .4158748                        | .3125019                        | .2482868                        |
| $10^{10}$             | $3.293531 \cdot 10^9$    | .6014386                      | .4149925                        | .3116161                        | .2474310                        |
| $1.037 \cdot 10^{11}$ | $3.058187 \cdot 10^{10}$ | .6010277                      | .4145862                        | .3112812                        | .2471641                        |
| $1.304 \cdot 10^{16}$ | $2.513274 \cdot 10^{15}$ | .6000982                      | .4135805                        | .3103638                        | .2463557                        |
| $10^{23}$             | $1.306643 \cdot 10^{22}$ | .5998569                      | .4133196                        | .3101270                        | .2461487                        |
|                       | $CUE_\infty$             | .5997504                      | .4132049                        | .3100223                        | .2460560                        |

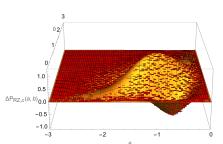


零点間隔の連結分布  $P_{\rm c}^{\rm RZ}(a,b)$ 

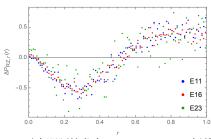


零点間隔比分布  $P_r^{RZ}(r)$ 

# 有限サイズ補正



零点間隔の連結分布の  $CUE_{\infty}$  からの偏差  $N_{\rm eff}^{\rm RZ}(a,b) - P_c^{\rm sin}(a,b))$ 



零点間隔比分布の  $\mathrm{CUE}_{\infty}$  からの偏差  $N_{\mathrm{eff}}^3(P_{\mathrm{r}}^{\mathrm{RZ}}(r)-P_{\mathrm{r}}^{\sin}(r))$ 

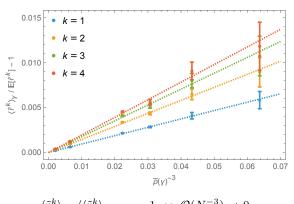
偏差は $\mathcal{O}(N^{-2})$ ,  $\mathsf{CUE}_N$  と一致



偏差は $\mathcal{O}(N^{-3})$ ,  $\mathsf{CUE}_N$  と異なる

# 有限サイズ補正

#### 零点間隔比のモーメント: $CUE_{\infty}$ からの偏差



$$\langle \tilde{r}^k \rangle_{\mathrm{RZ}} / \langle \tilde{r}^k \rangle_{\mathrm{CUE}_{\infty}} - 1 \propto \mathcal{O}(N_{\mathrm{eff}}^{-3}) \to 0$$

 $\mathsf{CUE}_N$  のギャップ比分布では  $\mathcal{O}(N^{-2})$  補正が消失  $\Rightarrow$  偏差は  $\mathcal{O}(N_{\mathrm{eff}}^{-3})$  でスケール

# 有限サイズ補正

#### Bogomolny-Keating 予想 1996

Riemann  $\zeta$  零点  $\{\frac{1}{2}+i\gamma_n|\gamma_npprox T\}$  は核  $K_{\mathrm{RZ}}(x-y)$  をもつ DPP として分布する

$$K_{\rm RZ}(x) = rac{\sin \pi x}{\pi x} + rac{\pi x \sin \pi x}{6N_{
m eff}^2} + rac{Q}{\sqrt{3}\Lambda^{3/2}} rac{(\pi x)^2 \cos \pi x}{6N_{
m eff}^3} + \mathcal{O}\Big(rac{1}{N_{
m eff}^4}\Big)$$
 $N_{
m eff} = rac{1}{\sqrt{12\Lambda}} \log rac{T}{2\pi}, \; \Lambda = 1.5731 \dots, \; Q = 2.3158 \dots \; (素数和に由来)$ 

根拠:Hardy-Littlewood 素数対予想 ightarrow 周期軌道対と解釈して Gutzwiller 跡公式を適用

$$K_{\text{CUE}}(x) = \frac{\sin \pi x}{\pi x} + \frac{\pi x \sin \pi x}{6N^2} + \frac{7(\pi x)^3 \sin \pi x}{360N^4} + \cdots$$
 にはない高次補正  $\mathcal{O}(N_{\text{eff}}^{-3})$  を ギャップ比分布の有限サイズ偏差  $N_{\text{eff}}^3(P_{\text{r}}^{\text{RZ}}(r) - P_{\text{r}}^{\sin}(r))$  で捕捉し BK 予想を確認

⇒ 量子カオス系の有限サイズ効果探索への, P<sub>r</sub>(r) の (潜在的) 有用性

# まとめ

- ・Jánossy 密度に対する Tracy-Widom PDE 系から, CUE<sub>N</sub> の隣接準位間隔の連結分布・比分布を導出
- ・CUE $_N$  の隣接準位間隔比では  $\mathcal{O}(N^{-2})$  補正が相殺し,  $\mathcal{O}(N^{-4})$  が見える  $_{[$  左図) ⇒ 量子カオス系の精緻な有限サイズ効果への窓口
- ・ $\zeta$  関数の隣接零点間隔比では  $\mathcal{O}(N_{\mathrm{eff}}^{-2})$  補正が相殺するが,  $\mathcal{O}(N_{\mathrm{eff}}^{-3})$  が存在  $[\pi \boxtimes]$   $\Rightarrow$  BK 予想と整合

