Recent Developments in the Link Formulation of Twisted SUSY on a Lattice

離散的手法による場と時空のダイナミクス2025

@明治学院大学白金キャンパス

Kazuhiro NAGATA

based on the collaboration with

- A. D'Adda INFN Torino, Italy, * passed away on April 23, 2022.
- N. Kawamoto Hokkaido Univ., Japan
- J. Saito Obihiro University of Agriculture and Veterinary Medicine, Japan

Contents of the talk

Most of the talk:

Part 1: Gauge Covariant Link Formulation of Twisted N=D=4 and N=4 D=5
 Super Yang-Mills on a Lattice

D'Adda, Kawamoto, K.N. and Saito, arXiv:2412.19666 [hep-lat] to appear in JHEP K. N., Doctor Thesis, 2005, Hokkaido University

A bit about:

Part 2: Non(anti)Commutative Superspace, BCH Closed Forms, and

Dirac-Kähler Twisted Supersymmetry

K.N., arXiv:2502.16410 [hep-th]

Summary & Discussion

Three Main Ingredients to realize Exact SUSY on a Lattice

1. Dirac-Kähler Twisted SUSY (Marcus B-twist or Geometric Langlands twist)

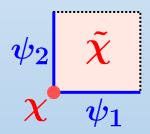
N=D=2:
$$Q_{\alpha i}=(\mathbf{1}Q+\gamma^{\mu}Q_{\mu}+\gamma^{5}\tilde{Q})_{\alpha i}$$

N=D=4: $Q_{\alpha i}=\frac{1}{\sqrt{2}}(\mathbf{1}Q+\gamma^{\mu}Q_{\mu}+\gamma^{\mu\nu}Q_{\mu\nu}+\tilde{\gamma}^{\mu}\tilde{Q}_{\mu}+\gamma^{5}\tilde{Q})_{\alpha i}$

solves Fermion doubling problem in terms of extended SUSY d.o.f.,

N=2,4 Twisted Fermion \iff Nf =2, 4 Staggered (Dirac-Kähler) Fermion

$$\chi \; \psi_{\mu} \; ilde{\chi}$$



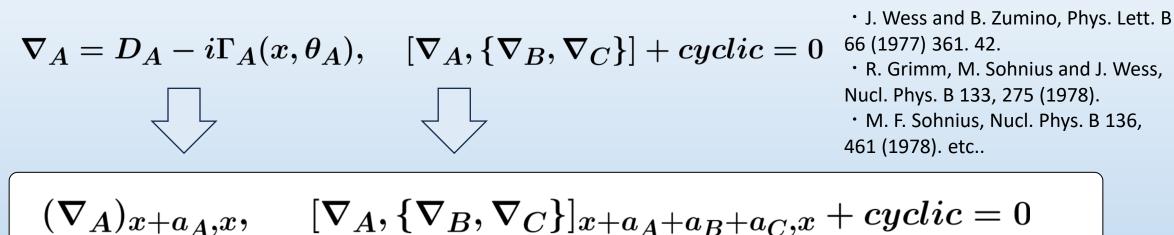
also provides a solution of Lattice Leibniz rule, as we will see..

c.f. SUSY inv. is up to total derivative: $\,\delta_A\,S=\int d^Dx\,\,\partial_\mu I_A^\mu\,\,=\,\,0\,$

Need to use Leibniz rule: $\,\partial_{\mu}(fg)=(\partial_{\mu}f)g+f(\partial_{\mu}g)\,$

Three Main Ingredients to realize Exact SUSY on a Lattice

2. Supercovariant formulation with Link (anti)commutators and Jacobi identities



provides manifest gauge covariance at every step of calculation.

3. Group and Algebraic structure with Non-(anti)commutative Grassmann coordinates θ_A and parameters ξ_A .

SUSY on a Lattice?

- Motivated by non-perturbative study of SUSY theories, numerical calculations of Duality and Gauge/Gravity correspondence, etc..
- Needs understandings of the SUSY preserving discrete spacetime through super Lie Group and Algebra.

Continuum spacetime:

$$\{Q_A,Q_B\}=f_{AB}^{\mu}\,\partial_{\mu}$$

Algebraic elements

of super Poincaré

Algebraic elements

Group element

defining discrete spacetime

Looks absurd! But it's possible with

Dirac-Kähler Twisted SUSY Algebra.

Part 1: Warming-up: N=D=2 Twisted SUSY Algebra

A. D'Adda, I. Kanamori, N. Kawamoto and K. N, Nucl. Phys. B707 (2005) 100-144

$$\{Q_{lpha}^{i},Q_{eta}^{j}\}=2\delta^{ij}(\gamma^{\mu})_{lphaeta}\partial_{\mu} egin{array}{c} eta,eta=1,2: ext{2D Euclidean} \ lpha,eta=1,2: ext{spinor indices} \ i,i=1,2: ext{internal indices} \end{array}$$

 $\mu, \nu = 1, 2: 2D$ Euclidean i, j = 1, 2: internal indices

$$\gamma^1=\sigma_3,\; \gamma^2=\sigma_1,\; \gamma^5=\gamma^1\gamma^2$$

Dirac-Kähler Twist

$$Q_{lpha}^{i}=(1{\color{red}Q}+\gamma^{\mu}{\color{red}Q}_{\mu}+\gamma^{5}{\color{red} ilde{Q}})_{lpha}^{i}$$

 $oldsymbol{Q}$: Fermionic Scalar

 Q_{μ} : Fermionic Vector

: Fermionic Pseudo Scalar

$egin{aligned} \{Q,Q_{\mu}\}&=+i\partial_{\mu}\ \{ ilde{Q},Q_{\mu}\}&=-i\epsilon_{\mu u}\partial_{ u} \end{aligned}$

On the Lattice?

$$egin{aligned} \{Q,Q_{\mu}\} &= +i\Delta_{\pm\mu} \ \{ ilde{Q},Q_{\mu}\} &= -i\epsilon_{\mu
u}\Delta_{\pm
u} \end{aligned}$$

 $\Delta_{\pm \mu}$: difference operators

Discretization of Twisted SUSY Algebra

$$\{Q_A,Q_B\}=f_{AB}^{\mu}\Delta_{\pm\mu}$$

$$Q_A=(Q,Q_\mu, ilde{Q})$$

<u>R.H.S.</u>

$$egin{aligned} (\Delta_{\pm\mu}\Phi)(x) &= \pm [\Phi(x\pm n_{\mu}) - \Phi(x)] \ &\equiv \Delta_{\pm\mu}\Phi(x) - \Phi(x\pm n_{\mu})\Delta_{\pm\mu} \end{aligned}$$

Defined as "Shifted" Commutator with

$$\Delta_{\pm\mu}=(\Delta_{\pm\mu})_{x\pm n_{\mu},x}=\mp\,{f 1}$$

$$x \stackrel{\Delta-\mu}{\longleftarrow} x \stackrel{\Delta+\mu}{\longleftarrow} x \stackrel{}{\longleftarrow} n_{\mu}$$

Lattice Leibniz rule for $\Delta_{\pm \mu}$:

$$\Delta_{\pm\mu}(\Phi(x)\Psi(x)) = (\Delta_{\pm\mu}\Phi(x))\Psi(x) + \Phi(x\pm n_{\mu})(\Delta_{\pm\mu}\Psi(x))$$

Discretization of Twisted SUSY Algebra

$$\{Q_A,Q_B\}=f_{AB}^{\mu}\Delta_{\pm\mu}$$

$$Q_A=(Q,Q_\mu, ilde{Q})$$

L.H.S.
$$(Q_A\Phi)(x)\equiv Q_A\Phi(x)\pm\Phi(x+a_A)Q_A$$

Introduce "Shifted" (Anti-) Commutator with Link Supercharge:

$$Q_A = (Q_A)_{x+a_A,x} \quad Q_A$$

$$(\{Q_A,Q_B\}\Phi)(x) = \{Q_A,Q_B\}\Phi(x)$$

$$-\Phi(x+a_A+a_B)\{Q_A,Q_B\}$$

$$egin{aligned} \{Q_A,Q_B\}(\Phi(x)\Psi(x))&=(\{Q_A,Q_B\}\Phi(x))\Psi(x)\ &+\Phi(x+oldsymbol{a}_A+oldsymbol{a}_B)(\{Q_A,Q_B\}\Psi(x))_{_{\mathbb{S}}} \end{aligned}$$

Lattice Leibniz rule condition

Consistency Requires:

$$egin{aligned} a_A + a_B &= + n_{m{\mu}} & ext{for} & \Delta_{+m{\mu}} \ a_A + a_B &= - n_{m{\mu}} & ext{for} & \Delta_{-m{\mu}} \end{aligned}$$

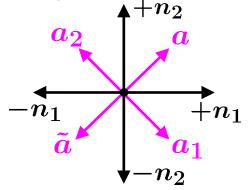
Solution exists for Twisted SUSY

$$a + a_{\mu} = +n_{\mu} \ ilde{a} + a_{\mu} = -|\epsilon_{\mu
u}|n_{
u} \ a + a_1 + a_2 + ilde{a} = 0$$

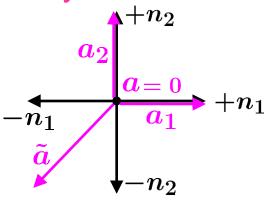
Twisted N=D=2 Lattice SUSY Algebra

$$egin{aligned} \{Q,Q_{\mu}\}&=+i\Delta_{+\mu}\ \{ ilde{Q},Q_{\mu}\}&=-i\epsilon_{\mu
u}\Delta_{-
u} \end{aligned}$$

• Symm. Choice



• Asymm. Choice



N=D=4 Twisted SUSY Algebra

$$\{Q_{lpha}^{i},\overline{Q}_{eta}^{j}\}=2\delta^{ij}(\gamma^{\mu})_{lphaeta}\partial_{\mu}$$

$$\bar{Q}^i_\alpha = (C^{-1}QC)^i_\alpha$$

 $\left(egin{array}{l} \mu,
u=1\sim 4: ext{4D Euclidean} \ lpha,eta=1\sim 4: ext{spinor indices} \ i,j=1\sim 4: ext{internal indices} \ C=\gamma_2\gamma_4: \gamma_\mu^T=C^{-1}\gamma_\mu C \end{array}
ight)$

Dirac-Kähler Twist

$$Q_{\alpha i} = (1 \mathbf{Q} + \gamma^{\mu} \mathbf{Q}_{\mu} + \gamma^{\mu\nu} \mathbf{Q}_{\mu\nu} + \tilde{\gamma}^{\mu} \tilde{\mathbf{Q}}_{\mu} + \gamma^{5} \tilde{\mathbf{Q}})_{i\alpha} \qquad \qquad \tilde{\gamma}^{\mu} \equiv \gamma_{\mu} \gamma_{5}$$

$$egin{pmatrix} \gamma^{\mu
u} \equiv rac{1}{2} [\gamma^{\mu}, \gamma^{
u}] \ ilde{\gamma}^{\mu} \equiv \gamma_{\mu} \gamma_{5} \ \gamma_{5} \equiv \gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4} \end{pmatrix}$$

$$egin{aligned} \{Q,Q_{\mu}\}&=-i\partial_{\mu}\ \{Q_{
ho\sigma},Q_{\mu}\}&=+i\delta_{
ho\sigma\mu
u}\partial_{
u}\ \{Q_{
ho\sigma}, ilde{Q}_{\mu}\}&=-i\epsilon_{
ho\sigma\mu
u}\partial_{
u}\ \{ ilde{Q}, ilde{Q}_{\mu}\}&=-i\partial_{\mu} \end{aligned}$$

$$\delta_{
ho\sigma\mu
u} \equiv \delta_{
ho\mu}\delta_{\sigma
u} - \delta_{
ho
u}\delta_{\sigma\mu}$$

$$egin{aligned} \{Q,Q_{\mu}\}&=-i\Delta_{\pm\mu}\ \{Q_{
ho\sigma},Q_{\mu}\}&=+i\delta_{
ho\sigma\mu
u}\Delta_{\pm
u}\ \{Q_{
ho\sigma}, ilde{Q}_{\mu}\}&=-i\epsilon_{
ho\sigma\mu
u}\Delta_{\pm
u}\ \{ ilde{Q}, ilde{Q}_{\mu}\}&=-i\Delta_{\pm\mu} \end{aligned}$$

On the Lattice?

Twisted N=D=4 Lattice SUSY Algebra

$$egin{aligned} \{Q,Q_{\mu}\}&=-i\Delta_{+\mu}\ \{Q_{
ho\sigma},Q_{\mu}\}&=+i\delta_{
ho\sigma\mu
u}\Delta_{-
u}\ \{Q_{
ho\sigma}, ilde{Q}_{\mu}\}&=-i\epsilon_{
ho\sigma\mu
u}\Delta_{+
u}\ \{ ilde{Q}, ilde{Q}_{\mu}\}&=-i\Delta_{-\mu} \end{aligned}$$

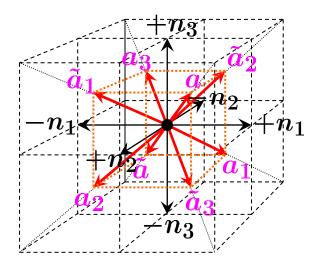
Lattice Leibniz rule cond.

$$egin{aligned} a+a_{\mu}&=+n_{\mu}\ a_{
ho\sigma}+a_{\mu}&=-|\delta_{
ho\sigma\mu
u}|n_{
u}\ a_{
ho\sigma}+ ilde{a}_{\mu}&=+|\epsilon_{
ho\sigma\mu
u}|n_{
u}\ ilde{a}+ ilde{a}_{\mu}&=-n_{\mu} \end{aligned}$$

$$\sum a_A = 0$$

Symmetric choice

	n_1	n_2	n_3	n_4		n_1	n_2	n_3	n_4
\boldsymbol{a}	$+\frac{1}{2}$	$+\frac{1}{2}$	$+\frac{1}{2}$	$+\frac{1}{2}$	a_1	$+\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$
a_{12}	$-\frac{1}{2}$	$-\frac{1}{2}$	$+\frac{1}{2}$	$+\frac{1}{2}$	a_2	$-\frac{1}{2}$	$+\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$
a_{13}	$-\frac{1}{2}$	$+\frac{1}{2}$	$-\frac{1}{2}$	$+\frac{1}{2}$	a_3	$-\frac{1}{2}$	$-\frac{1}{2}$	$+\frac{1}{2}$	$-\frac{1}{2}$
a_{14}	$-\frac{1}{2}$	$+\frac{1}{2}$	$+\frac{1}{2}$	$-\frac{1}{2}$	a_4	$-\frac{1}{2}$	$-rac{1}{2}$	$-\frac{1}{2}$	$+\frac{1}{2}$
a_{23}	$+\frac{1}{2}$	$-\frac{1}{2}$	$-rac{1}{2}$	$+\frac{1}{2}$	$ ilde{a}_4$	$+\frac{1}{2}$	$+\frac{1}{2}$	$+\frac{1}{2}$	$-\frac{1}{2}$
a_{24}	$+\frac{1}{2}$	$-\frac{1}{2}$	$+\frac{1}{2}$	$-\frac{1}{2}$	$ ilde{a}_3$	$+\frac{1}{2}$	$+\frac{1}{2}$	$-rac{1}{2}$	$+\frac{1}{2}$
a_{34}	$+\frac{1}{2}$	$+\frac{1}{2}$	$-rac{1}{2}$	$-\frac{1}{2}$	$ ilde{a}_2$	$+\frac{1}{2}$	$-\frac{1}{2}$	$+\frac{1}{2}$	$+\frac{1}{2}$
$ ilde{m{a}}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$ ilde{a}_1$	$-\frac{1}{2}$	$+\frac{1}{2}$	$+\frac{1}{2}$	$+\frac{1}{2}$



$$a_A \sim (\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}), \quad 2^4 = \underline{16} \quad \Longleftrightarrow \quad \text{\# of vertices of 4D Hypercube}$$

Guage Covariant extension to N=D=4 Twisted SYM

Introduce Bosonic & Fermionic Link variables

$$egin{array}{lll} (\Delta_{\pm\mu})_{x\pm n_{\mu},x} &
ightarrow &\mp (\mathcal{U}_{\pm\mu})_{x\pm n_{\mu},x} \ (Q_A)_{x+a_A,x} &
ightarrow &(
abla_A)_{x+a_A,x} \end{array}$$

Gauge trans.

$$(\mathcal{U}_{\pm\mu})' = G_{x\pm n_{\mu}} (\mathcal{U}_{\pm\mu}) G_{x}^{-1} \ (\nabla_{A})' = G_{x+a_{A}} (\nabla_{A}) G_{x}^{-1} \ x - n_{\mu} x + n_{\mu}$$

•
$$(\mathcal{U}_{\pm\mu})_{x\pm n_{\mu},x}=(e^{\pm i(A_{\mu}\pm iV_{\mu})})_{x\pm n_{\mu},x},$$
 $V_{\mu}\;(\mu=1\sim 4):\;$ Twisted scalar (vector) fields in SYM multiplet

•
$$\mathcal{U}_{+\mu}\mathcal{U}_{-\mu} \neq 1$$

Expected multiplet of N=D=4 Lattice SYM

Twisting of N=D=4

Define $SO(4)_{Lorentz}^{twisted}$ as the diagonal subgroup of $SO(4)_{Lorents} \otimes SO(4)_{Internal}$

- J.P. Yamron, Phys.Lett. B213 (1988) 325
- C. Vafa, E. Witten, Nucl. Phys. B431 (1994) 3
- N. Marcus, Nucl. Phys. B452 (1995) 331

Dirac-Kähler Twisting

	Untwisted	A-type	B-type
helicity	$(SU(2)_L,SU(2)_R,SO(4)_I)$	4 $ ightarrow$ $(2,1)$ \oplus $(2,1)$	$4 o (2,1)\oplus (1,2)$
+1	$\omega_{\mu}(2,2,1)$	(2,2)	(2,2)
$+\frac{1}{2}$	$\lambda_i^lpha({f 2,1,4})$	$2(1,1) \oplus 2(3,1)$	$(1,1)\oplus(3,1)\oplus(2,2)$
0	$\phi_{ij}(1,1,6)$	$\mathtt{3}(1,1)\oplus(\mathtt{3},1)$	$2(1,1)\oplus(2,2)$
$-\frac{1}{2}$	$ar{\lambda}_{\dot{lpha}i}(1,2,4)$	2(2,2)	$(1,1)\oplus (1,3)\oplus (2,2)$
-1	$\omega_{\mu}(2,2,1)$	(2,2)	(2,2)

- $2(1,1) \cdots W$, F: 2 scalars
- $(2,2) \cdots V_{\mu}$: 4-vector (twisted scalars)

N=D=4 SYM constraints on a Lattice

$$\{
abla,
abla_{\mu}\}_{x+a+a_{\mu},x} = +i(\mathcal{U}_{+\mu})_{x+n_{\mu},x},$$
 $\{
abla_{
ho\sigma},
abla_{\mu}\}_{x+a_{
ho\sigma}+a_{\mu},x} = +i\delta_{
ho\sigma\mu\nu}(\mathcal{U}_{-\nu})_{x-n_{\nu},x},$
 $\{
abla_{
ho\sigma}, \tilde{\nabla}_{\mu}\}_{x+a_{
ho\sigma}+\tilde{a}_{\mu},x} = +i\epsilon_{
ho\sigma\mu\nu}(\mathcal{U}_{+\nu})_{x+n_{\nu},x},$
 $\{\tilde{\nabla}, \tilde{\nabla}_{\mu}\}_{x+\tilde{a}+\tilde{a}_{\mu},x} = -i(\mathcal{U}_{-\mu})_{x-n_{\mu},x},$
 $\{
abla, \tilde{\nabla}, \tilde{\nabla}\}_{x+a+\tilde{a},x} = -i(\mathcal{W})_{x+a+\tilde{a},x},$
 $\{
abla_{\mu\nu},
abla_{
ho\sigma}\}_{x+a_{\mu\nu}+a_{\rho\sigma},x} = +i\epsilon_{\mu\nu\rho\sigma}(\mathcal{W})_{x+a_{\mu\nu}+a_{\rho\sigma},x},$
 $\{
abla_{\mu\nu}, \tilde{\nabla}_{\nu}\}_{x+a_{\mu}+\tilde{a}_{\nu},x} = -i\delta_{\mu\nu}(F)_{x+a_{\mu}+\tilde{a}_{\nu},x},$
 $\{
abla_{\mu\nu}, \tilde{\nabla}_{\nu}\}_{x+a_{\mu}+\tilde{a}_{\nu},x} = -i\delta_{\mu\nu}(F)_{x+a_{\mu}+\tilde{a}_{\nu},x},$
 $\{abhers\} = 0,$

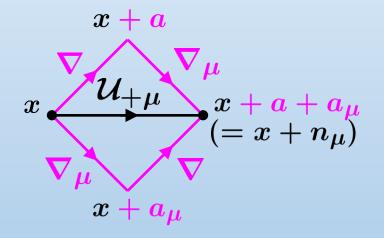
Lattice Leibniz rule condition becomes gauge covariant condition on the lattice.

"Shifted" Anti-commutator

$$\{
abla,
abla_{\mu}\}_{x+a+a_{\mu},x}$$

$$\equiv (
abla)_{x+a+a_{\mu},x+a_{\mu}} (
abla_{\mu})_{x+a_{\mu},x}$$

$$+(
abla_{\mu})_{x+a+a_{\mu},x+a} (
abla)_{x+a,x}$$



$$\left[\begin{array}{c} \cdot \cdot \cdot a + a_{\mu} = +n_{\mu} \\ \vdots \end{array} \right]$$

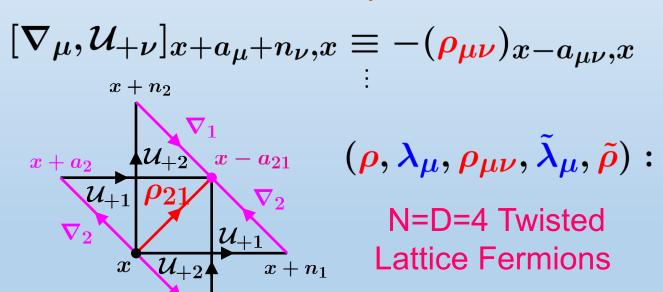
Jacobi Identity analysis & Lattice multiplet

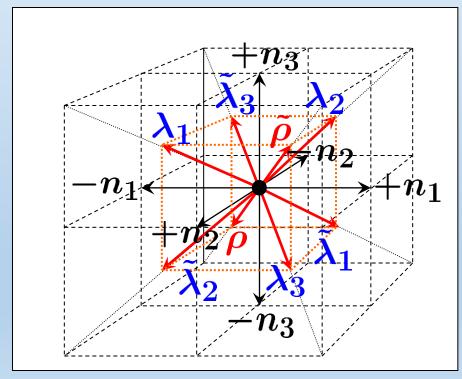
$$[
abla_{\mu}\{
abla_{
u},
abla\}]_{x+a_{\mu}+n_{
u},x}+(cyclic)=0,$$

: trivially holds even for shifted (anti)commutators

$$[
abla_{\mu}, \mathcal{U}_{+
u}]_{x+a_{\mu}+n_{
u},x} + [
abla_{
u}, \mathcal{U}_{+\mu}]_{x+a_{
u}+n_{\mu},x} = 0,$$

Define fermionic link components





N=D=4 SUSY trans. laws

	s	$s_{ ho\sigma}$	$ ilde{m{s}}$
$\mathcal{U}_{+\mu}$	0	$-\delta_{ ho\sigma\mu u}\lambda_ u$	$+ ilde{\lambda}_{\mu}$
$ \mathcal{U}_{-\mu} $	$+\lambda_{\mu}$	$+\epsilon_{ ho\sigma\mu u} ilde{\lambda}_{ u}$	0
W	0	0	0
$oldsymbol{F}$	$- ilde{ ho}$	$-rac{1}{2}\epsilon_{m{ ho}m{\sigma}lpham{eta}}m{ ho}_{m{lpha}m{eta}}$	- ho
ρ	$\left +rac{i}{2}([\mathcal{U}_{+\lambda},\mathcal{U}_{-\lambda}]+[W,F]) ight $	$-i[\mathcal{U}_{- ho},\mathcal{U}_{-\sigma}]$	0
λ_{μ}	0	$-i\epsilon_{ ho\sigma\mu u}[\mathcal{U}_{+ u},W]$	$+i[\mathcal{U}_{-\mu},W]$
$ ho_{\mu u}$	$+i[\mathcal{U}_{+\mu},\mathcal{U}_{+ u}]$	$\left +i\delta_{ ho\sigma\mu\lambda}[\mathcal{U}_{+ u},\mathcal{U}_{-\lambda}]-i\delta_{ ho\sigma u\lambda}[\mathcal{U}_{+\mu},\mathcal{U}_{-\lambda}] ight $	$+rac{i}{2}\epsilon_{\mu ulphaeta}[\mathcal{U}_{-lpha},\mathcal{U}_{-eta}]$
_		$-rac{i}{2}\delta_{ ho\sigma\mu u}([\mathcal{U}_{+\lambda},\mathcal{U}_{-\lambda}]+[W,F])$	
$ \tilde{\lambda}_{\mu} $	$-i[\mathcal{U}_{+\mu},W]$	$+i\delta_{ ho\sigma\mu u}[\mathcal{U}_{- u},W]$. 0
$ ilde{ ho}$	0	$+rac{i}{2}\epsilon_{ ho\sigmalphaeta}[\mathcal{U}_{+lpha},\mathcal{U}_{+eta}]$	$-rac{i}{2}([\mathcal{U}_{+\lambda},\mathcal{U}_{-\lambda}]-[W,F])$

	$s_{ ho}$	$ ilde{s}_{ ho}$
$\mathcal{U}_{+\mu}igg $	$- ho_{ ho\mu}$	$-\delta_{ ho\mu} ilde{ ho}$
$\mathcal{U}_{-\mu}igg $	$+\delta_{ ho\mu} ho$	$-rac{1}{2}\epsilon_{ ho\mulphaeta} ho_{lphaeta}$
W	$+ ilde{\lambda}_{ ho}$	$-\lambda_ ho$
$oldsymbol{F}$	0	0
ρ	0	$+i[\mathcal{U}_{- ho},F]$
λ_{μ}	$+i[\mathcal{U}_{+ ho},\mathcal{U}_{-\mu}]$	$-rac{i}{2}\epsilon_{ ho\mulphaeta}[\mathcal{U}_{+lpha},\mathcal{U}_{+eta}]$
	$\left -rac{\imath}{2}\delta_{ ho\mu}([\mathcal{U}_{+\lambda},\mathcal{U}_{-\lambda}]+[W,F]) ight $	
$ ho_{\mu u}$	$-i\epsilon_{ ho\sigma\mu u}[\mathcal{U}_{-\sigma},F]$	$-i\delta_{ ho\sigma\mu u}[\mathcal{U}_{+\sigma},F]$
$ ilde{\lambda}_{m{\mu}} \mid$	$+rac{i}{2}\epsilon_{ ho\mulphaeta}[\mathcal{U}_{-lpha},\mathcal{U}_{-eta}]$	$_{\cdot}$ $+i[\mathcal{U}_{+\mu},\mathcal{U}_{- ho}]$
		$\left -rac{\imath}{2}\delta_{ ho\mu}([\mathcal{U}_{+\lambda},\mathcal{U}_{-\lambda}]-[W,F]) ight $
$ ilde{oldsymbol{ ho}}$	$-i[\mathcal{U}_{+ ho},F]$	0

$$egin{aligned} s_A(arphi)_{x+a_arphi,x} \ &\equiv [
abla_A,arphi]_{x+a_arphi+a_A,x} \ arphi &= (\mathcal{U}_{\pm\mu},W,F,
ho,\lambda_\mu,
ho_{\mu
u}, ilde{\lambda}_\mu, ilde{
ho}) \end{aligned}$$

No Auxiliary fields in the multiplet

Resulting SUSY Algebra closes only on-shell

$$\{s, s_{\mu}\}(\varphi)_{x+a_{\varphi}, x} \stackrel{\dot{=}}{=} +i[\mathcal{U}_{+\mu}, \varphi]_{x+n_{\mu}+a_{\varphi}, x}$$

$$\{s_{\rho\sigma}, s_{\mu}\}(\varphi)_{x+a_{\varphi}, x} \stackrel{\dot{=}}{=} +i\delta_{\rho\sigma\mu\nu}[\mathcal{U}_{-\nu}, \varphi]_{x-n_{\nu}+a_{\varphi}, x}$$

$$\{s_{\rho\sigma}, \tilde{s}_{\mu}\}(\varphi)_{x+a_{\varphi}, x} \stackrel{\dot{=}}{=} +i\epsilon_{\rho\sigma\mu\nu}[\mathcal{U}_{+\nu}, \varphi]_{x+n_{\nu}+a_{\varphi}, x}$$

$$\{\tilde{s}, \tilde{s}_{\mu}\}(\varphi)_{x+a_{\varphi}, x} \stackrel{\dot{=}}{=} -i[\mathcal{U}_{-\mu}, \varphi]_{x-n_{\mu}+a_{\varphi}, x}$$

$$\{s, \tilde{s}\}(\varphi)_{x+a_{\varphi}, x} \stackrel{\dot{=}}{=} -i[\mathcal{W}, \varphi]_{x+a+\tilde{a}+a_{\varphi}, x}$$

$$\{s_{\mu\nu}, s_{\rho\sigma}\}(\varphi)_{x+a_{\varphi}, x} \stackrel{\dot{=}}{=} +i\epsilon_{\mu\nu\rho\sigma}[\mathcal{W}, \varphi]_{x+a+\tilde{a}+a_{\varphi}, x}$$

$$\{s_{\mu}, \tilde{s}_{\nu}\}(\varphi)_{x+a_{\varphi}, x} \stackrel{\dot{=}}{=} -i\delta_{\mu\nu}[F, \varphi]_{x-a-\tilde{a}+a_{\varphi}, x}$$

$$\{others\}(\varphi)_{x+a_{\varphi}, x} \stackrel{\dot{=}}{=} 0$$

$$\varphi : (\mathcal{U}_{\pm\mu}, \mathcal{W}, F, \rho, \lambda_{\mu}, \rho_{\mu\nu}, \tilde{\lambda}_{\mu}, \tilde{\rho})$$

Equalities hold up to eqns. of motion:
$$[\mathcal{U}_{+\mu},\lambda_{\mu}] - [W,\tilde{\rho}] = 0$$

$$[\mathcal{U}_{-\mu},\tilde{\lambda}_{\mu}] - [W,\rho] = 0$$

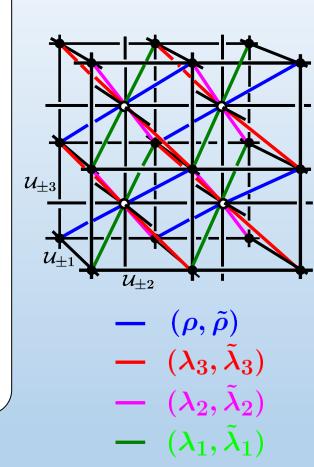
$$[\mathcal{U}_{+\mu},\rho] - [\mathcal{U}_{-\nu},\rho_{\mu\nu}] + [F,\tilde{\lambda}_{\mu}] = 0$$

$$[\mathcal{U}_{-\mu},\tilde{\rho}] + \frac{1}{2}\epsilon_{\mu\nu\rho\sigma}[\mathcal{U}_{+\nu},\rho_{\rho\sigma}] + [F,\lambda_{\mu}] = 0$$

$$\delta_{\mu\nu\rho\sigma}[\mathcal{U}_{-\rho},\lambda_{-\sigma}] + \frac{1}{2}\epsilon_{\mu\nu\rho\sigma}[W,\rho_{\rho\sigma}] - \epsilon_{\mu\nu\rho\sigma}[\mathcal{U}_{+\rho},\tilde{\lambda}_{\sigma}] = 0$$

Lattice N=D=4 Dirac-Kähler Twisted SYM Action

$$\begin{split} S_{TSYM}^{N=D=4} &= \sum_{x} \text{ tr } \left[-\frac{1}{2} [\mathcal{U}_{+\mu}, \mathcal{U}_{+\nu}]_{x,x-n_{\mu}-n_{\nu}} [\mathcal{U}_{-\mu}, \mathcal{U}_{-\nu}]_{x-n_{\mu}-n_{\nu},x} \right. \\ &\quad + \frac{1}{4} [\mathcal{U}_{+\mu}, \mathcal{U}_{-\mu}]_{x,x} [\mathcal{U}_{+\nu}, \mathcal{U}_{-\nu}]_{x,x} + \frac{1}{4} [W, F]_{x,x} [W, F]_{x,x} \\ &\quad - \frac{1}{2} [\mathcal{U}_{+\mu}, W]_{x,x-n_{\mu}-a-\tilde{a}} [\mathcal{U}_{-\mu}, F]_{x-n_{\mu}-a-\tilde{a},x} \\ &\quad - \frac{1}{2} [\mathcal{U}_{-\mu}, W]_{x,x+n_{\mu}-a-\tilde{a}} [\mathcal{U}_{+\mu}, F]_{x+n_{\mu}-a-\tilde{a},x} \\ &\quad + i(\lambda_{\mu})_{x,x+a_{\mu}} [\mathcal{U}_{+\mu}, \rho]_{x+a_{\mu},x} - i\tilde{\rho}_{x,x+\tilde{a}} [W, \rho]_{x+\tilde{a},x} + i(\lambda_{\mu})_{x,x+a_{\mu}} [F, \tilde{\lambda}_{\mu}]_{x+a_{\mu},x} \\ &\quad - i(\lambda_{\mu})_{x,x+a_{\mu}} [\mathcal{U}_{-\nu}, \rho_{\mu\nu}]_{x+a_{\mu},x} + i(\tilde{\rho})_{x,x+\tilde{a}} [\mathcal{U}_{-\mu}, \tilde{\lambda}_{\mu}]_{x+\tilde{a},x} \\ &\quad + \frac{i}{2} \epsilon_{\mu\nu\rho\sigma} (\tilde{\lambda}_{\mu})_{x,x+\tilde{a}_{\mu}} [\mathcal{U}_{+\nu}, \rho_{\rho\sigma}]_{x+\tilde{a}_{\mu},x} + \frac{i}{8} \epsilon_{\mu\nu\rho\sigma} (\rho_{\mu\nu})_{x,x+a_{\mu\nu}} [W, \rho_{\rho\sigma}]_{x+a_{\mu\nu},x} \right] \end{split}$$



For Symm. Choice

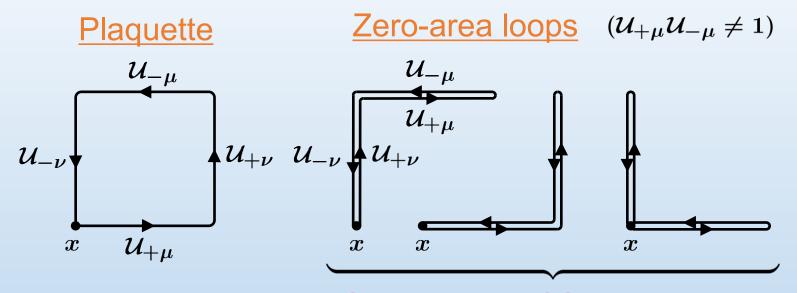
$$\sum_{x} = \sum_{\bullet} + \sum_{\bullet}$$

• Integer sites (m_1, m_2, m_3, m_4)

Half-Integer sites

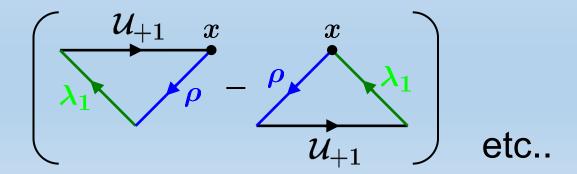
$$(m_1+rac{1}{2},m_2+rac{1}{2},m_3+rac{1}{2},m_4+rac{1}{2})$$

Boson terms in the Action



Contribution of Scalar Fields

Fermion terms in the Action



Remark 1: Gauge Covariant SUSY variations

Gauge cov. SUSY variation for φ :

$$\delta_A(arphi)_{x+a_arphi,x}=(oldsymbol{\xi}_A)_{x+a_arphi,x+a_arphi}+a_A\ (s_Aarphi)_{x+a_arphi}+a_A,x$$

$$\delta_A \left(egin{array}{c} arphi \ x + a_arphi \end{array}
ight) \ = \left(egin{array}{c} x + a_arphi + a_A \ \xi_A & s_A arphi \ x + a_arphi \end{array}
ight) \ \left[\cdot \{
abla_A, \xi_B \}_{x + a_A - a_B, x} = 0
ight]$$

$$\mid \cdot \{ \nabla_A, \xi_B \}_{x+a_A-a_B, x} = 0$$

$$S[\varphi + \delta_A \varphi] - S[\varphi] = 0$$
: SUSY inv. of Action can be shown

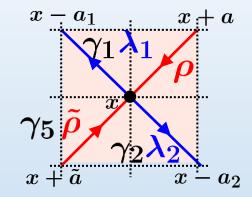
for all the supercharges: $\delta_A=(\xi s,\,\xi_\mu s_\mu,\,\xi_{\mu\nu}s_{\mu\nu},\,\tilde{\xi}_\mu\tilde{s}_\mu,\,\tilde{\xi}\tilde{s})$: μ,ν no sum

by utilizing cyclic permutation properties under $\sum tr$ and Jacobi identities.

Remark 2: Staggered Structure of Twisted Fermions

Free part of (for simplicity N=D=2 case)

$$\sum_x ext{Tr}igg[-i[\mathcal{U}_{+\mu},\lambda_{\mu}]_{x,x-a}(
ho)_{x-a,x} \ -i(ilde{
ho})_{x,x+ ilde{a}}\epsilon_{\mu
u}[\mathcal{U}_{-\mu},\lambda_{
u}]_{x+ ilde{a},x}igg]$$



$$oxed{ \zeta_{lpha i}(x) = rac{1}{2}igg((
ho)_{x,x+a} + \gamma_{\mu}(\lambda_{\mu})_{x-a_{\mu},x} + \gamma_{5}(ilde{
ho})_{x,x+ ilde{a}}igg)_{lpha i}}$$

$$\sum_{x} \left[-i \bar{\zeta}_{i\alpha}(x) (\gamma_{\mu})_{\alpha\beta} \frac{\Delta_{+\mu} + \Delta_{-\mu}}{2} \zeta_{\beta i}(x) \right]$$
 1st Diff. term w.r.t. Double size lattice
$$-i \bar{\zeta}_{i\alpha}(x) (\gamma_5)_{\alpha\beta} \frac{\Delta_{+\mu} - \Delta_{-\mu}}{2} \zeta_{\beta i}(x) (\gamma_5 \gamma_{\mu})_{ji} \right]$$
 2nd Diff. term ~ O(lat.const.)

N=2,4 Twisted Fermions Nf = 2,4 Staggered Fermions

Naïve Continuum limit

$$(\mathcal{U}_{\pm\mu})_{x\pm n_{\mu},x} = (e^{\pm i(A_{\mu}\pm iV_{\mu})})_{x\pm n_{\mu},x}$$

= $(1\pm i(A_{\mu}\pm iV_{\mu})+\cdots)_{x\pm n_{\mu},x}$

$$\begin{split} S_{TSYM}^{N=D=4} &\to S_{cont} \; = \; \int d^4x \; \mathrm{tr} \; \left[\frac{1}{2} F_{\mu\nu} F_{\mu\nu} + [\mathcal{D}_{\mu}, W] [\mathcal{D}_{\mu}, F] + [\mathcal{D}_{\mu}, V_{\nu}] [\mathcal{D}_{\mu}, V_{\nu}] \right. \\ & \left. - \frac{1}{2} [V_{\mu}, V_{\nu}] [V_{\mu}, V_{\nu}] + [V_{\mu}, W] [V_{\mu}, F] + \frac{1}{4} [W, F] [W, F] \right. \\ & \left. - i \lambda_{\mu} [\mathcal{D}_{\mu}, \rho] - i \lambda_{\mu} [V_{\mu}, \rho] - i \tilde{\rho} [W, \rho] \right. \\ & \left. - i \lambda_{\mu} [\mathcal{D}_{\nu}, \rho_{\mu\nu}] + i \lambda_{\mu} [V_{\nu}, \rho_{\mu\nu}] \right. \\ & \left. + i \tilde{\rho} [\mathcal{D}_{\mu}, \tilde{\lambda}_{\mu}] - i \tilde{\rho} [V_{\mu}, \tilde{\lambda}_{\mu}] + i \lambda_{\mu} [F, \tilde{\lambda}_{\mu}] \right. \\ & \left. - \frac{i}{2} \epsilon_{\mu\nu\rho\sigma} \tilde{\lambda}_{\mu} [\mathcal{D}_{\nu}, \rho_{\rho\sigma}] - \frac{i}{2} \epsilon_{\mu\nu\rho\sigma} \tilde{\lambda}_{\mu} [V_{\nu}, \rho_{\rho\sigma}] + \frac{i}{8} \epsilon_{\mu\nu\rho\sigma} \rho_{\mu\nu} [W, \rho_{\rho\sigma}] \right] \end{split}$$

Short Summary of Link Formulation

- N=D=4 Twisted SYM on a Lattice is constructed with:
 - Lattice SUSY Algebra for All Supercharges
 - SUSY inv. Action w.r.t. All Supercharges with Grassmann link parameter ξ_A
- Why Twisted SUSY ?
 - Dirac-Kähler (Simplicial) Structure of Fermions
 Twisted Fermions
 (N-extended SUSY)
 (N-flavors)
 - provides manifest gauge covariance via Lattice Leibniz rule

We show that an Exponentiation of Bosonic super-covariant derivatives $\nabla_{\pm\mu}$ lead to Link (anti)commutator formulation.

Begin with the super-covariant constraint in continuum spacetime.

$$\{
abla_A,
abla_B\}=f_{AB}^{\mu}
abla_{\pm\mu}$$
: locally gauge covariant $(
abla_A,
abla_B,
abla_{\pm\mu})$ $abla_B=f_{AB}^{\mu}
abla_{\pm\mu}$: locally gauge covariant $(
abla_A,
abla_B,
abla_{\pm\mu})$ $abla_B=f_{AB}^{\mu}
abla_{\pm\mu}$: locally gauge covariant $(
abla_A,
abla_B,
abla_B,
abla_B=f_{AB}^{\mu}
abla_B$: locally gauge covariant $(
abla_A,
abla_B,
abla_B,
abla_B,
abla_B$: locally gauge covariant $(
abla_A,
abla_B,
abla_B,
abla_B,
abla_B$: locally gauge covariant $(
abla_A,
abla_B,
abla_B,
abla_B,
abla_B$: locally gauge covariant $(
abla_A,
abla_B,
abla_B,
abla_B,
abla_B,
abla_B$: locally gauge covariant $(
abla_A,
abla_B,
abla$

where ∇_A and ∇_B : fermionic super-covariant derivatives $(\nabla, \nabla_\mu, \nabla_{\rho\sigma}, \tilde{\nabla}_\mu, \tilde{\nabla})$

$$abla_{\pm\mu} = \partial_{\mu} - i\Gamma^{\pm}_{\mu}$$
 : bosonic super-covariant derivatives

$$=\partial_{\mu}-i(\omega_{\mu}\pm iV_{\mu})+\cdots$$
 • ω_{μ} : gauge fields

 $\bullet V_{u}$: twisted scalars

Promote the Bosonic super-covariant derivative $\nabla_{\pm\mu}$ to exponentiated Group element.

$$\{\nabla_A, \nabla_B\} = -f_{AB}^{\mu} e^{-\nabla_{+\mu}},$$

$$\{\nabla_A, \nabla_B\} = +f_{AB}^{\mu} e^{+\nabla_{-\mu}},$$

$$\{\nabla_A, \nabla_B\} = +f_{AB}^{\mu} e^{+\nabla_{-\mu}},$$

• f_{AB}^{μ} : numerical coefficient

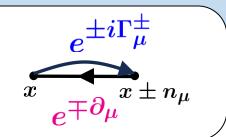
Note that both hand sides still locally gauge covariant:

$$e^{\mp \nabla_{\pm \mu}} \to \mathcal{G}^{-1}(x) \, e^{\mp \nabla_{\pm \mu}} \, \mathcal{G}(x)$$

Why the r.h.s. are still local?

 $e^{\mp \nabla \pm \mu}$ contain contributions of :

- $\pm i\Gamma_{\mu}^{\pm}$ connecting x to $x\pm n_{\mu}$ in a gauge covariant manner
- $\mp \partial_{\mu}$ pulling back $x \pm n_{\mu}$ to x by shift operation



Thus, it is natural to try to separate these two contributions:

$$e^{\mp \nabla_{\pm \mu}} = (\mathcal{U}_{\pm \mu})_{x,x \mp n_{\mu}} e^{\mp \partial_{\mu}}$$
 where

$$\cdot (\mathcal{U}_{+\mu})_{x,x-n_{\mu}} \equiv e^{-\nabla_{+\mu}} e^{+\partial_{\mu}} = e^{-\partial_{\mu} + i\Gamma_{\mu}^{+}} e^{+\partial_{\mu}}$$

$$= e^{+i\Gamma_{\mu}^{+} - \frac{i}{2}[\partial_{\mu}, \Gamma_{\mu}^{+}] + \cdots}, \quad (\mu : \text{no sum}) ,$$

$$\cdot (\mathcal{U}_{-\mu})_{x,x+n_{\mu}} = e^{+\nabla_{-\mu}} e^{-\partial_{\mu}} = e^{+\partial_{\mu}-i\Gamma_{\mu}^{-}} e^{-\partial_{\mu}}$$

$$= e^{-i\Gamma_{\mu}^{-} - \frac{i}{2}[\partial_{\mu}, \Gamma_{\mu}^{-}] + \cdots}, \quad (\mu : \text{no sum}) .$$

with Link gauge covariance

$$(\mathcal{U}_{\pm\mu})_{x,x\mp n_{\mu}} \rightarrow \mathcal{G}^{-1}(x) (\mathcal{U}_{\pm\mu})_{x,x\mp n_{\mu}} \mathcal{G}(x\mp n_{\mu})$$

In terms of $(\mathcal{U}_{\pm\mu})_{x\pm n_{\mu},x}$, the exponentiated algebra $\overleftrightarrow{\kappa}$ can be re-expressed

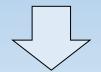
as:

$$\{\nabla_{A}(x), \nabla_{B}(x)\} = -f_{AB}^{\mu} (\mathcal{U}_{+\mu})_{x,x-n_{\mu}} e^{-\partial_{\mu}},$$

$$= -f_{AB}^{\mu} e^{-\partial_{\mu}} (\mathcal{U}_{+\mu})_{x+n_{\mu},x},$$

$$\{\nabla_{A}(x), \nabla_{B}(x)\} = +f_{AB}^{\mu} (\mathcal{U}_{-\mu})_{x,x+n_{\mu}} e^{+\partial_{\mu}},$$

$$= +f_{AB}^{\mu} e^{+\partial_{\mu}} (\mathcal{U}_{-\mu})_{x-n_{\mu},x}$$



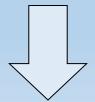
$$e^{+a_A\cdot\partial} \nabla_A(x+a_B) e^{+a_B\cdot\partial} \nabla_B(x)$$

 $+e^{+a_B\cdot\partial} \nabla_B(x+a_A) e^{+a_A\cdot\partial} \nabla_A(x) = -f_{AB}^{\mu} (\mathcal{U}_{+\mu})_{x+n_{\mu},x},$
 in a case where $\underline{a_A+a_B=+n_{\mu}}$ is satisfied, or

$$e^{+a_A\cdot\partial} \nabla_A(x+a_B) e^{+a_B\cdot\partial} \nabla_B(x)$$

$$+\underline{e^{+a_B\cdot\partial}}\nabla_B(x+a_A)\underline{e^{+a_A\cdot\partial}}\nabla_A(x) = +f^{\mu}_{AB}(\mathcal{U}_{-\mu})_{x-n_{\mu},x},$$

in a case where $a_A+a_B=-n_{\mu}$ is satisfied.



express
$$e^{+a_A \cdot \partial} \nabla_A(x)$$
 as $(\nabla_A)_{x+a_A,x}$, $e^{+a_B \cdot \partial} \nabla_B(x)$ as $(\nabla_B)_{x+a_B,x}$,

$$\{\nabla_A, \nabla_B\}_{x+a_A+a_B,x} = -f_{AB}^{\mu} (\mathcal{U}_{+\mu})_{x+n_{\mu},x}, \text{ for } a_A + a_B = +n_{\mu},$$

 $\{\nabla_A, \nabla_B\}_{x+a_A+a_B,x} = +f_{AB}^{\mu} (\mathcal{U}_{-\mu})_{x-n_{\mu},x}, \text{ for } a_A + a_B = -n_{\mu},$

which are nothing but generic expressions of N=D=4 SYM constraints on a Lattice:

$$\begin{split} \{\nabla,\nabla_{\mu}\}_{x+a+a_{\mu},x} &= +i(\mathcal{U}_{+\mu})_{x+n_{\mu},x}, & a+a_{\mu}=+n_{\mu} \\ \{\nabla_{\rho\sigma},\nabla_{\mu}\}_{x+a_{\rho\sigma}+a_{\mu},x} &= +i\delta_{\rho\sigma\mu\nu}(\mathcal{U}_{-\nu})_{x-n_{\nu},x}, & a_{\rho\sigma}+a_{\mu}=-|\delta_{\rho\sigma\mu\nu}|n_{\nu} \\ \{\nabla_{\rho\sigma},\tilde{\nabla}_{\mu}\}_{x+a_{\rho\sigma}+\tilde{a}_{\mu},x} &= +i\epsilon_{\rho\sigma\mu\nu}(\mathcal{U}_{+\nu})_{x+n_{\nu},x}, & a_{\rho\sigma}+\tilde{a}_{\mu}=+|\epsilon_{\rho\sigma\mu\nu}|n_{\nu} \\ \{\tilde{\nabla},\tilde{\nabla}_{\mu}\}_{x+\tilde{a}+\tilde{a}_{\mu},x} &= -i(\mathcal{U}_{-\mu})_{x-n_{\mu},x}, & \tilde{a}+\tilde{a}_{\mu}=-n_{\mu} \end{split}$$

NOTE: Once expressed by link(anti)commutators, the formulation can be described by discrete lattice cites

Before exponentiating the bosonic covariant derivative, the algebra:

$$\{\nabla_A, \nabla_B\} = f_{AB}^{\mu} \nabla_{\pm \mu}$$

 $\{\nabla_A,\nabla_B\}=f_{AB}^{\mu}\nabla_{\pm\mu}$ is invariant under scale transformation D:

$$\left[\mathbf{D}, \nabla_A \right] = \frac{1}{2} \nabla_A, \quad \left[\mathbf{D}, \nabla_B \right] = \frac{1}{2} \nabla_B, \quad \left[\mathbf{D}, \nabla_{\pm \mu} \right] = \nabla_{\pm \mu},$$

After the exponentiation, the above D is no longer a symmetry.

$$\{\nabla_A, \nabla_B\} = -f_{AB}^{\mu} e^{-\nabla_{+\mu}},$$

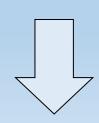
$$\{\nabla_A, \nabla_B\} = +f_{AB}^{\mu} e^{+\nabla_{-\mu}},$$

$$[D, \nabla_A] = \frac{1}{2}\nabla_A, [D, \nabla_B]$$

$$[D, \nabla_A] = \frac{1}{2}\nabla_A, [D, \nabla_B]$$

$$[\mathbf{D}, \nabla_A] = \frac{1}{2} \nabla_A, \ [\mathbf{D}, \nabla_B]$$
 $\frac{1}{2} \nabla_B, \ [\mathbf{D}, \nabla_{\pm \mu}] = \nabla_{\pm \mu},$

However, if we introduce component-wise eigenvalues d_A, d_B :



$$\begin{bmatrix} [\mathbf{D}, \nabla_A] &= d_A \nabla_A, & [\mathbf{D}, \nabla_B] &= d_B \nabla_B, \end{bmatrix}$$

and consider a finite trans. of D: $e^{\mathrm{D}}(\cdots)e^{-\mathrm{D}}$

We then obtain Weyl - 'tHooft type algebra

which have special solutions: (under gauge fields switched off)

$$e^{d_A + d_B} e^{-\nabla_{+\mu}} = e^{\mathbf{D}} e^{-\nabla_{+\mu}} e^{-\mathbf{D}},$$

 $e^{d_A + d_B} e^{+\nabla_{-\mu}} = e^{\mathbf{D}} e^{+\nabla_{-\mu}} e^{-\mathbf{D}},$

$$[\partial_{\mu}, \mathbf{D}] = d_A + d_B,$$
$$[\partial_{\mu}, \mathbf{D}] = -(d_A + d_B)$$

If d_A, d_B satisfy Lattice Leibniz rule

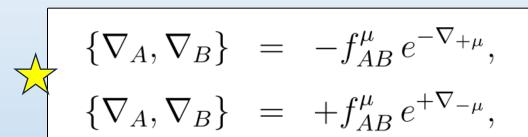
$$[\partial_{\mu},x_{
u}]=(n_{
u})_{\mu}=\delta_{
u\mu}$$

D serves as a position operator $x_
u$.

It looks as if the scale operator D splits to each direction of position operator, $x_
u$.

To emphasize once again: after exponentiating the bosonic covariant derivative,

the scale transformation D is no longer a symmetry of 💢 .



$$\left[\left[\mathbf{D}, \nabla_A \right] = \frac{1}{2} \nabla_A, \left[\mathbf{D}, \nabla_B \right] - \frac{1}{2} \nabla_B, \left[\mathbf{D}, \nabla_{\pm \mu} \right] = \nabla_{\pm \mu}, \right]$$

But, the position operator $x_{ u}$ satisfying:

$$[x_{\nu}, \nabla_A] = (a_A)_{\nu} \nabla_A, [x_{\nu}, \nabla_B] = (a_B)_{\nu} \nabla_B,$$

$$a_A + a_B = +n_\mu,$$

$$a_A + a_B = -n_\mu,$$

is a symmetry of $\uparrow \uparrow$, provided the Lattice Leibniz rule conditions and Weyl - 'tHooft algebra are satisfied.

$$e^{x_{\nu}} e^{-\nabla_{+\mu}} = e^{\delta_{\nu\mu}} e^{-\nabla_{+\mu}} e^{x_{\nu}},$$

 $e^{x_{\nu}} e^{+\nabla_{-\mu}} = e^{-\delta_{\nu\mu}} e^{+\nabla_{-\mu}} e^{x_{\nu}},$

COMMENT 1: the non-commutativity relations:

$$[x_{\nu}, \nabla_A] = (a_A)_{\nu} \nabla_A, [x_{\nu}, \nabla_B] = (a_B)_{\nu} \nabla_B,$$

Formulations with Link (anti)commutators which we have constructed

• imply that fermionic Link covariant derivative $(\nabla_A)_{x+a_A,x} = e^{+a_A\cdot\partial} \nabla_A(x)$

$$(\nabla_A)_{x+a_A,x} = e^{+a_A \cdot \partial} \nabla_A(x)$$

does NOT have non-commutativity in the sense of $\left[x_{\nu},e^{+a_{A}\cdot\partial}\nabla_{A}(x)\right]=0$.

$$[x_{\nu}, e^{+a_A \cdot \partial} \nabla_A(x)] = 0$$

• whereas also imply non-commutativity among $x_{
u}$ and (non-link) θ_A :

$$[x_{\nu}, \frac{\partial}{\partial \theta_A}] = (a_A)_{\nu} \frac{\partial}{\partial \theta_A}, \quad [x_{\nu}, \theta_A] = -(a_A)_{\nu} \theta_A.$$

Formulations with non(anti)commutative superspace

COMMENT 2: Remind that:

$$\{\nabla_A, \nabla_B\} = -f_{AB}^{\mu} e^{-\nabla_{+\mu}},$$

$$\{\nabla_A, \nabla_B\} = +f_{AB}^{\mu} e^{+\nabla_{-\mu}},$$

stems from the exponentiation of $\nabla_{\pm\mu}$ in the r.h.s. of $\overleftrightarrow{\chi}$.

If we start from the ordinary anti-commutative relation: $\{\xi_A,\xi_B\}=0$

$$\{\xi_A, \xi_B\} = 0$$

we obtain

$$(\xi_A)_{x-a_A,x} \equiv e^{-a_A \cdot \partial} \xi_A, \quad \text{with} \quad [x_\nu, \xi_A] = 0$$

which satisfies

$$\cdot \{\nabla_A, \xi_B\}_{x+a_A-a_B, x} = 0$$

$$egin{array}{lll} \cdot & (\xi_A)_{x+a_A,x} \
ightarrow & G_{x+a_A}^{-1} & (\xi_A)_{x+a_A,x} & G_x & = & (\xi_A)_{x+a_A,x} \end{array}$$

Thus, $(\xi_A)_{x+a_A,x}$ can serve as Grassmann link parameters ensuring SUSY inv. of the Action.

Short Summary of Group and Algebraic aspects

- Promotion of super-covariant derivatives $abla_{\pm\mu}$ to Group element provides Link (anti)commutator formulation and $(\mathcal{U}_{\pm\mu})_{x\pm n_{\mu},x}$.
 - Microscopic understanding of Lattice super Yang-Mills.
- After the promotion, it looks as if the scale operator D splits to each direction of position operator $x_{
 u}$.
 - ightharpoonup Provides algebraic understanding of Grassmann link parameter ξ_A
 - Expectation of Large Symmetry including spacetime structure behind the formulation. As large as N=D=4 superconformal?

Part 2: Non(anti)commutative superspace

K.N., arXiv:2502.16410 [hep-th]

Consider Q_A , θ_A , ξ_A with non(anti)commutativities (NAC):

$$\{Q_A, Q_B\} = P_{AB}, \quad Q_A^2 = Q_B^2 = 0,$$

$$\{\theta_A, \theta_B\} = a_{AB}, \quad \theta_A^2 = \theta_B^2 = 0.$$

$$\{\xi_A, \xi_B\} = c_{AB}, \quad \xi_A^2 = \xi_B^2 = 0,$$

$$\{\xi_A, \theta_B\} = \{\xi_B, \theta_A\} = b_{AB}, \quad \{\xi_A, \theta_A\} = \{\xi_B, \theta_B\} = 0$$
 NAC in vector sector

and define:

$$X \equiv \xi_A Q_A + \xi_B Q_B, \quad Y \equiv \theta_A Q_A + \theta_B Q_B, \quad (A, B : \text{no sum})$$

we then have:

$$[X, [X, Y]] = \gamma Y + \beta X,$$
$$[Y, [Y, X]] = \alpha X + \beta Y,$$

$$\alpha \equiv -a_{AB}P_{AB},$$
 $\beta \equiv +b_{AB}P_{AB},$
 $\gamma \equiv -c_{AB}P_{AB}.$

Non(anti)commutative superspace

which induces Infinite dimensional Lie Algebra:

$$X_{l,m,n} \equiv \alpha^{l}\beta^{m}\gamma^{n}X, \quad l,m,n = 0,1,2,... \qquad \beta \equiv +b_{AB}P_{AB},$$

$$Y_{l,m,n} \equiv \alpha^{l}\beta^{m}\gamma^{n}Y, \quad l,m,n = 0,1,2,...$$

$$Z_{l,m,n} \equiv \alpha^{l}\beta^{m}\gamma^{n}[X,Y], \quad l,m,n = 0,1,2,...,$$

$$[X_{l,m,n},Y_{l',m',n'}] = Z_{l+l',m+m',n+n'}$$

$$[X_{l,m,n},Z_{l',m',n'}] = X_{l+l',m+m'+1,n+n'} + Y_{l+l',m+m',n+n'+1}$$

$$[Y_{l,m,n},Z_{l',m',n'}] = -X_{l+l'+1,m+m',n+n'} - Y_{l+l',m+m'+1,n+n'},$$

$$X \equiv \xi_A Q_A + \xi_B Q_B$$
, $Y \equiv \theta_A Q_A + \theta_B Q_B$, $(A, B : \text{no sum})$

 $\alpha \equiv -a_{AB}P_{AB}$

Non(anti)commutative superspace

Multiplication of superspace group elements becomes highly non-linear:

$$\begin{split} e^X e^Y &= \exp\left[F(\alpha,\beta,\gamma) \left(G(\alpha)X + G(\gamma)Y + \frac{1}{2}[X,Y]\right)\right], \quad \text{closed form BCH with} \\ F(\alpha,\beta,\gamma) &= \\ &\frac{\log\left(\text{ch}\sqrt{\frac{1}{4}\alpha} \, \text{ch}\sqrt{\frac{1}{4}\gamma} - \frac{\beta}{\sqrt{\alpha\gamma}} \, \text{sh}\sqrt{\frac{1}{4}\alpha} \, \text{sh}\sqrt{\frac{1}{4}\gamma} + \sqrt{\left(\text{ch}\sqrt{\frac{1}{4}\alpha} \, \text{ch}\sqrt{\frac{1}{4}\gamma} - \frac{\beta}{\sqrt{\alpha\gamma}} \, \text{sh}\sqrt{\frac{1}{4}\alpha} \, \text{sh}\sqrt{\frac{1}{4}\gamma}\right)^2 - 1}\right)}{\frac{\sqrt{\frac{1}{4}\alpha}\sqrt{\frac{1}{4}\gamma}}{\text{sh}\sqrt{\frac{1}{4}\gamma}}\sqrt{\left(\text{ch}\sqrt{\frac{1}{4}\alpha} \, \text{ch}\sqrt{\frac{1}{4}\gamma} - \frac{\beta}{\sqrt{\alpha\gamma}} \, \text{sh}\sqrt{\frac{1}{4}\alpha} \, \text{sh}\sqrt{\frac{1}{4}\gamma}\right)^2 - 1}}}, \\ G(\alpha) &= \frac{\sqrt{\frac{1}{4}\alpha} \, \text{ch}\sqrt{\frac{1}{4}\alpha}}{\text{sh}\sqrt{\frac{1}{4}\alpha}}, \quad G(\gamma) &= \frac{\sqrt{\frac{1}{4}\gamma} \, \text{ch}\sqrt{\frac{1}{4}\gamma}}{\text{sh}\sqrt{\frac{1}{4}\gamma}}, \\ \beta &\equiv +b_{AB}P_{AB}, \\ \beta &\equiv -c_{AB}P_{AB}, \\ \gamma &\equiv -c_{AB}P_{AB}. \end{split}$$

Non(anti)commutative superspace

However, if we consider a problem setting corresponding to Lattice SUSY:

$$\{Q_A,Q_B\}=rac{+i}{n_{AB}}e^{-in_{AB}P_{AB}}, \qquad \{ heta_A, heta_B\}=-i\,a_{AB}\,e^{+in_{AB}P_{AB}}, \qquad [x, heta_A]=-a_A heta_A$$
 $\{ heta_A, heta_B\}=+i\,a_{AB}\,e^{-in_{AB}P_{AB}}, \qquad [x, heta_A]=-a_B heta_B.$ $\{ heta_A, heta_B\}=0, \qquad [x, heta_B]=-a_B heta_B.$ $\{ heta_A, heta_B\}=0, \qquad [x, heta_B]=-a_B heta_B.$

the non-linear terms turn to be governed by a ratio factor $r_a = a_{AB}/n_{AB}$. In a particular example, if we consider N=D=4 case:

$$X = \xi Q + \xi_{\mu} Q_{\mu} + \frac{1}{2} \xi_{\mu\nu} Q_{\mu\nu} + \tilde{\xi}_{\mu} \tilde{Q}_{\mu} + \tilde{\xi} \tilde{Q},$$

$$Y = \theta Q + \theta_{\mu} Q_{\mu} + \frac{1}{2} \theta_{\mu\nu} Q_{\mu\nu} + \tilde{\theta}_{\mu} \tilde{Q}_{\mu} + \tilde{\theta} \tilde{Q}, \quad (\mu, \nu = 1 \sim 4: \text{summed up})$$

and take:
$$an\sqrt{r_a}=\sqrt{r_a}$$
 , then

and take:
$$\tan \sqrt{r_a} = \sqrt{r_a}$$
, then $e^X e^Y = \exp \left[X + Y + \frac{1}{2}[X,Y]\right]$ is EXACT.

Summary & Discussions

- N=D=4 Twisted SYM on a Lattice is constructed via Link formulation.
 - Lattice SUSY Algebra and SUSY inv. for All Supercharges
- Group and Algebraic aspects of the formulation have been revealed, which provides microscopic understanding of Lattice SUSY.
 - ullet Gauge Link variables $(\mathcal{U}_{\pm\mu})_{x\pm n_{\mu},x}$ naturally obtained by exp SUSY algebra
 - Position operators x_{μ} appeared as symm. generators of exp SUSY algebra Realization of "Algebra defines spacetime."
- Non(anti)commutative superspace provides positive implications.
- Further studies are necessary for Quantum and Numerical aspects.
- Expectation of Larger Symmetry behind the formulation.

Thank you so much for your attention