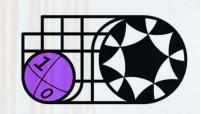
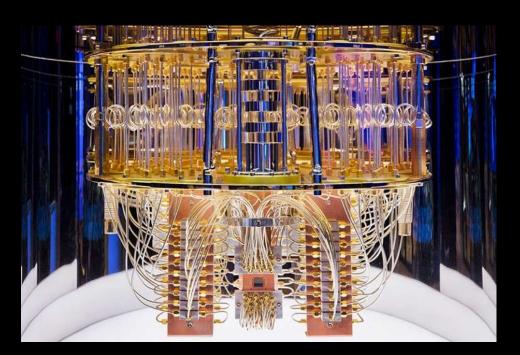
量子計算による 場と時空のダイナミクス

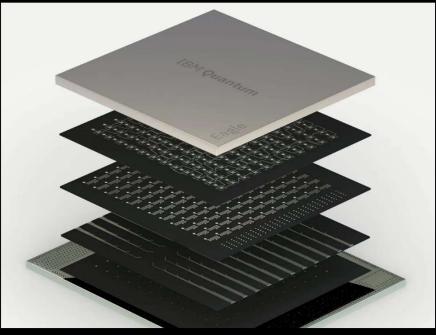
Masazumi Honda

(本多正純)



Quantum computer sounds growing well...





Article

Evidence for the utility of quantum computing before fault tolerance

https://doi.org/10.1038/s41586-023-06096-3

Received: 24 February 2023

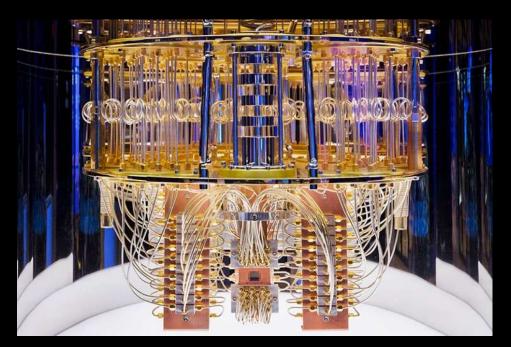
Accepted: 18 April 2023

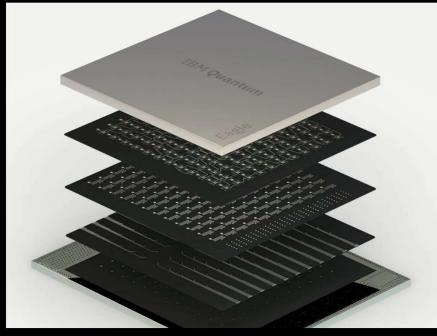
Published online: 14 June 2023

Youngseok Kim^{1,6 ⋈}, Andrew Eddins^{2,6 ⋈}, Sajant Anand³, Ken Xuan Wei¹, Ewout van den Berg¹, Sami Rosenblatt¹, Hasan Nayfeh¹, Yantao Wu³,4, Michael Zaletel³,5, Kristan Temme¹ & Abhinav Kandala¹ ⋈

Quantum computing promises to offer substantial speed-ups over its classical

Quantum computer sounds growing well...



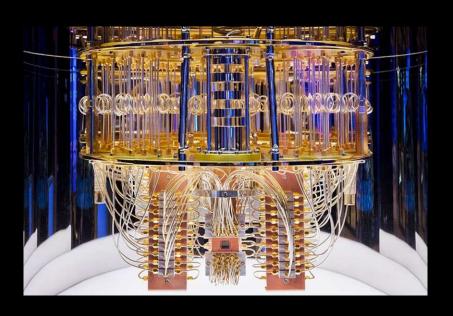


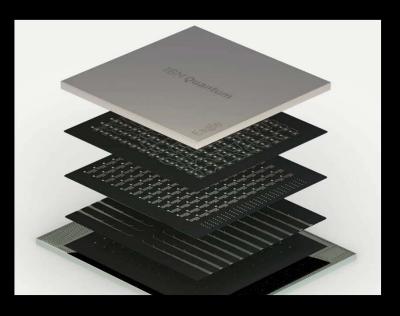
Article

Evidence for the utility of quantum computing before fault tolerance

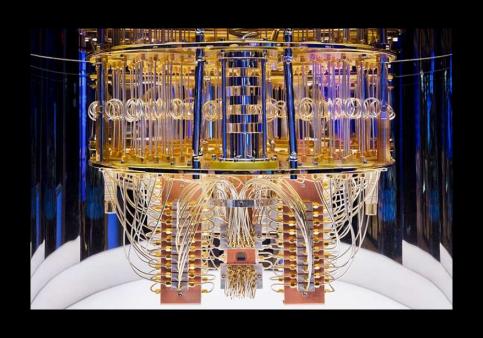
How can we use it for us?

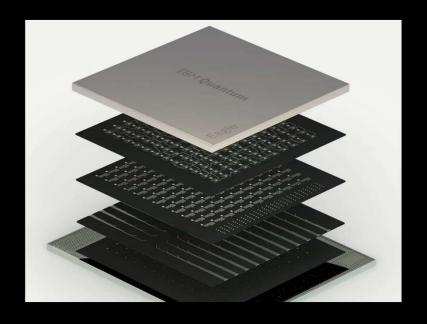
Applications mentioned in media?

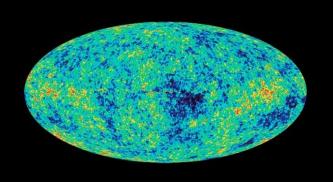




In my mind...







What is meant by

"Application of Quantum Computation to High Energy Physics" ??

```
In general, it is
```

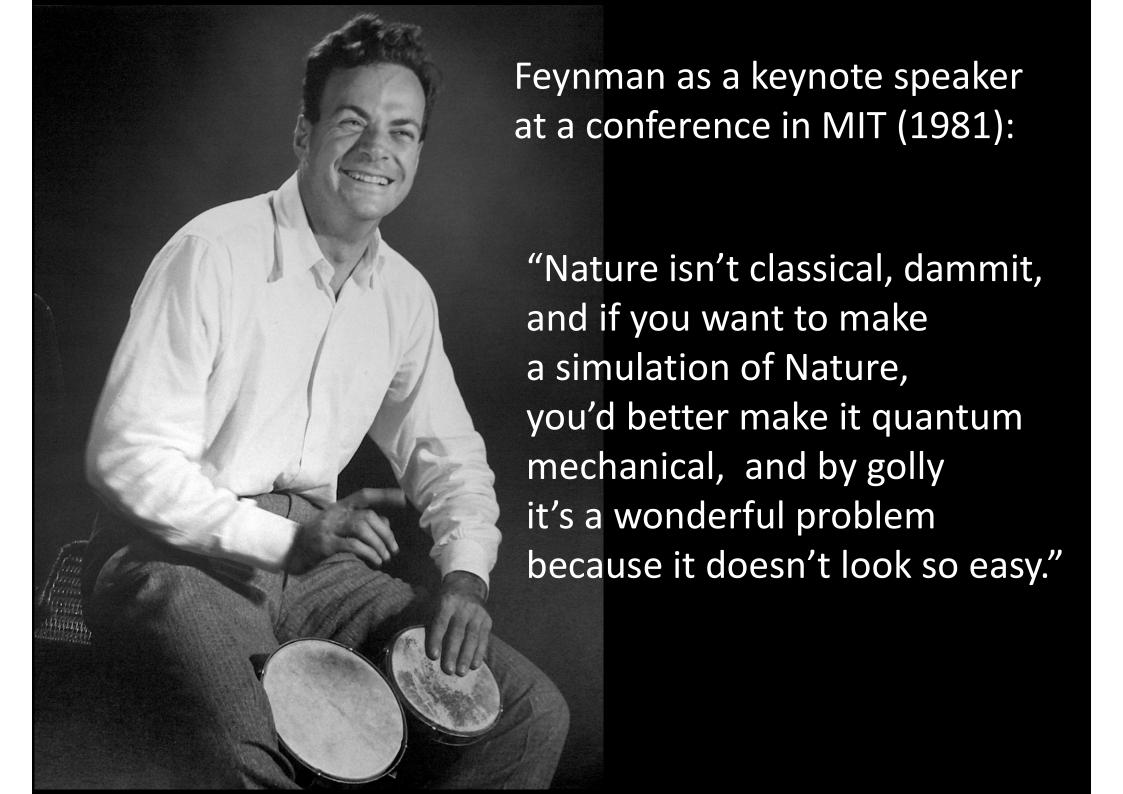
to replace (a part of) computations by quantum algorithm

```
Therefore,
```

physical meaning of qubits in quantum computer depends on contexts

Here,

qubits = states in quantum system



Focus of this talk:

Application of Quantum Computation to Quantum Field Theory & Gravity

• Generic motivation:

simply would like to use powerful computers?

Specific motivation:

Quantum computation is suitable for operator formalism

→ Liberation from infamous sign problem in Monte Carlo?

Cost of operator formalism

We have to play with huge vector space

since QFT typically has ∞-dim. Hilbert space

regularization needed!

Technically, computers have to

memorize huge vector & multiply huge matrices

Cost of operator formalism

We have to play with huge vector space

since QFT typically has ∞-dim. Hilbert space

regularization needed!

Technically, computers have to

memorize huge vector & multiply huge matrices

Quantum computers do this job?

Contents

- 0. Introduction
- 1. Quantum computation (QC)
- 2. Ising model
- 3. QC for QFT
- 4. QC for QG
- 5. Outlook

Qubit = Quantum Bit

Qubit = Quantum system w/ 2 dim. Hilbert space

Basis:

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 "computational basis"

Generic state:

$$\alpha |0\rangle + \beta |1\rangle$$
 w/ $|\alpha|^2 + |\beta|^2 = 1$

Ex.) Spin 1/2 system:

$$|0\rangle = |\uparrow\rangle, \qquad |1\rangle = |\downarrow\rangle$$

(We don't need to mind how it is realized as "users")

Multiple qubits

2 qubits – 4 dim. Hilbert space:

$$|\psi\rangle = \sum_{i,j=0,1} c_{ij} |ij\rangle, \qquad |ij\rangle \equiv |i\rangle \otimes |j\rangle$$

$$|00\rangle = \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix}, \qquad |01\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \qquad |10\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \qquad |11\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

N qubits – 2^N dim. Hilbert space:

$$|\psi\rangle = \sum_{i_1,\dots i_N=0,1} c_{i_1\dots i_N} |i_1\dots i_N\rangle,$$

$$|i_1i_2\cdots i_N\rangle \equiv |i_1\rangle \otimes |i_2\rangle \otimes \cdots \otimes |i_N\rangle$$

Rule of the game

Do something interesting by a combination of

1. action of Unitary operators:

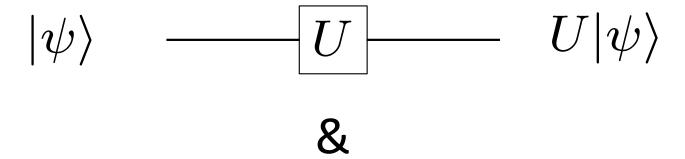
$$|\psi
angle$$
 — $U|\psi
angle$ &

<u>2.</u>

Rule of the game

Do something interesting by a combination of

1. action of Unitary operators:



2. measurements:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$c = 0 \text{ w/ probability } |\alpha|^2$$

$$c = 1 \text{ w/ probability } |\beta|^2$$

Unitary gates used here

X, Y, Z gates: (just Pauli matrices)

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

X is "NOT":
$$X|0\rangle = |1\rangle$$
, $X|1\rangle = |0\rangle$

R_X , R_Y , R_Z gates:

$$R_X(\theta) = e^{-\frac{i\theta}{2}X}, \quad R_Y(\theta) = e^{-\frac{i\theta}{2}Y}, \quad R_Z(\theta) = e^{-\frac{i\theta}{2}Z}$$

Controlled X (NOT) gate:

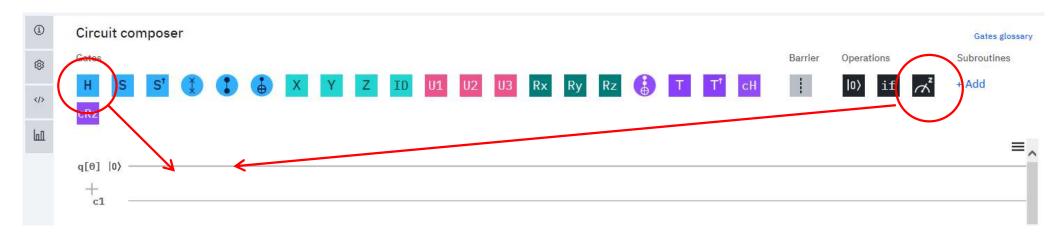
$$\begin{cases} CX|00\rangle = |00\rangle, & CX|01\rangle = |01\rangle, \\ CX|10\rangle = |11\rangle, & CX|11\rangle = |10\rangle \end{cases}$$

$$CX = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} =$$

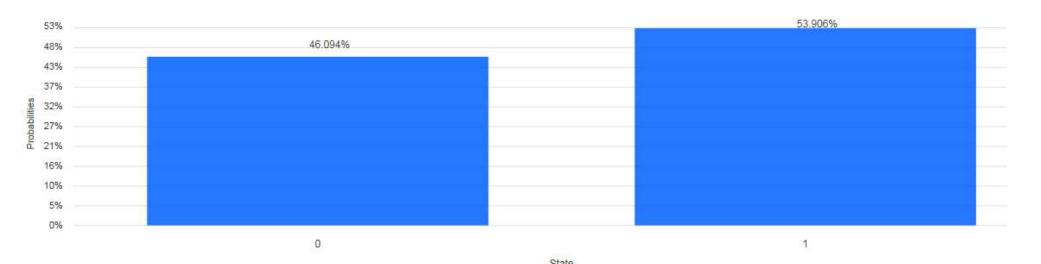
Atmosphere (?) of using quantum computer...

Suppose we'd like to measure the state: $H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

Screenshot of IBM Quantum:



Output of 1024 times measurements ("shots"):



Idea: express physical quantities in terms of "probabilities" & measure the "probabilities"

Errors in classical computers

Computer interacts w/ environment error/noise

Errors in classical computers

Computer interacts w/ environment error/noise



Suppose we send a bit but have "error" in probability p

A simple way to correct errors:

Errors in classical computers

Computer interacts w/ environment error/noise

Suppose we send a bit but have "error" in probability p

A simple way to correct errors:

- ① Duplicate the bit (encoding): $0 \rightarrow 000$, $1 \rightarrow 111$
- 2 Error detection & correction by "majority voting":

$$001 \to 000$$
, $011 \to 111$, etc...

$$P_{\text{failed}} = 3p^2(1-p) + p^3$$
 (improved if $p < 1/2$)

Errors in quantum computers

Computer interacts w/ environment error/noise

Unknown unitary operators are multiplied:

(in addition to decoherence & measurement errors)

$$|\psi\rangle$$
 error! $U|\psi\rangle$

not only bit flip!

Errors in quantum computers

Computer interacts w/ environment error/noise

Unknown unitary operators are multiplied:

(in addition to decoherence & measurement errors)

$$|\psi\rangle$$
 $\xrightarrow{error!}$ $U|\psi\rangle$ not only bit flip!

We need to include "quantum error corrections" but it seems to require a huge number of qubits

~ major obstruction of the development

Contents

- 0. Introduction
- 1. Quantum computation (QC)
- 2. Ising model
- 3. QC for QFT
- 4. QC for QG
- 5. Outlook

The (1+1)d transverse Ising model



Hamiltonian (w/ open b.c.):

$$(X_n, Y_n, Z_n: \sigma_{1,2,3} \text{ at site } n)$$

$$\widehat{H} = -J \sum_{n=1}^{N-1} Z_n Z_{n+1} - h \sum_{n=1}^{N} X_n$$

Let's construct the time evolution op. $e^{-i\widehat{H}t}$

Time evolution operator

Time evolution of any state is studied by acting the operator

$$e^{-i\hat{H}t} = e^{-i(H_X + H_{ZZ})t}$$

where

$$H_X = -h(X_1 + X_2), \quad H_{ZZ} = -JZ_1Z_2$$

How do we express this in terms of elementary gates?

(such as $X, Y, Z, R_{X,Y,Z}, CX$ etc...)

Step 1: Suzuki-Trotter decomposition:

Time evolution operator

Time evolution of any state is studied by acting the operator

$$e^{-i\hat{H}t} = e^{-i(H_X + H_{ZZ})t}$$

where

$$H_X = -h(X_1 + X_2), \quad H_{ZZ} = -JZ_1Z_2$$

How do we express this in terms of elementary gates?

(such as $X, Y, Z, R_{X,Y,Z}, CX$ etc...)

Step 1: Suzuki-Trotter decomposition:

(³higher order improvements)

$$e^{-i\hat{H}t} = \left(e^{-i\hat{H}\frac{t}{M}}\right)^{M}$$
 (M: large positive integer)
$$\simeq \left(e^{-iH_X\frac{t}{M}}e^{-iH_{ZZ}\frac{t}{M}}\right)^{M} + \mathcal{O}(1/M)$$

Time evolution operator (cont'd)

$$e^{-i\hat{H}t} \simeq \left(e^{-iH_X\frac{t}{M}}e^{-iH_{ZZ}\frac{t}{M}}\right)^M$$

acting on qubit 2 acting on qubit 1

The 1st one is trivial:

$$e^{-iH_X \frac{t}{M}} = e^{-i\frac{ht}{M}X_2} e^{-i\frac{ht}{M}X_1} = R_X^{(2)} \left(\frac{2ht}{M}\right) R_X^{(1)} \left(\frac{2ht}{M}\right)$$

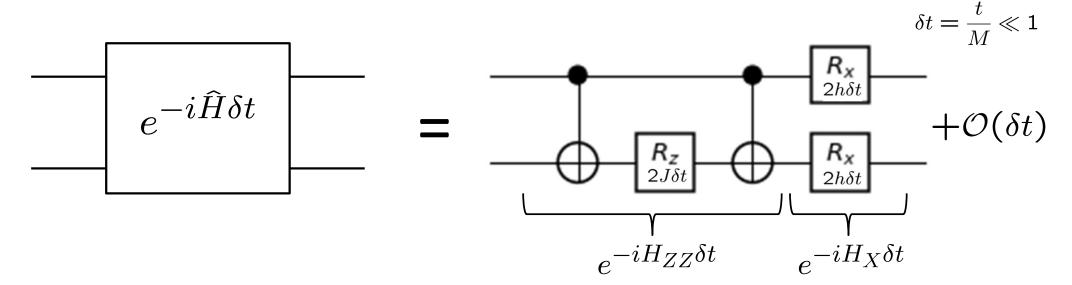
The 2nd one is nontrivial:

$$e^{-iH_{ZZ}\frac{t}{M}} = e^{-i\frac{Jt}{M}Z_1Z_2} = \cos\frac{Jt}{M} - iZ_1Z_2\sin\frac{Jt}{M}$$

One can show

$$e^{-i\frac{Jt}{M}Z_1Z_2} = CXR_Z^{(2)}\left(\frac{2Jt}{M}\right)CX$$

"Computational cost" for large size system



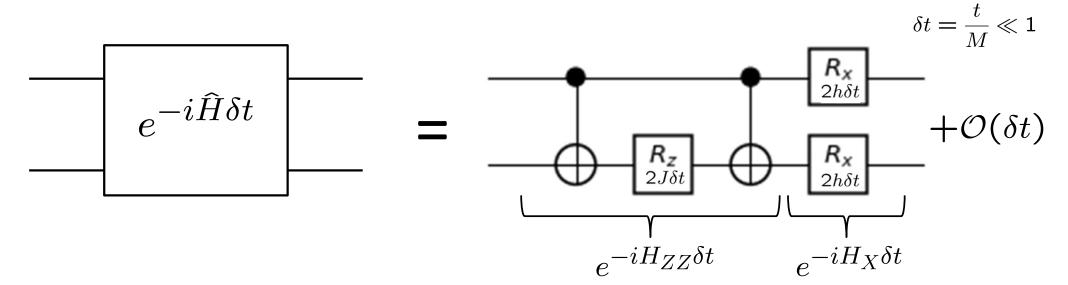
Classical computer

multiplications of matrices to vectors w/ sizes = 2^N

exponentially large steps

Quantum computer

"Computational cost" for large size system



Classical computer

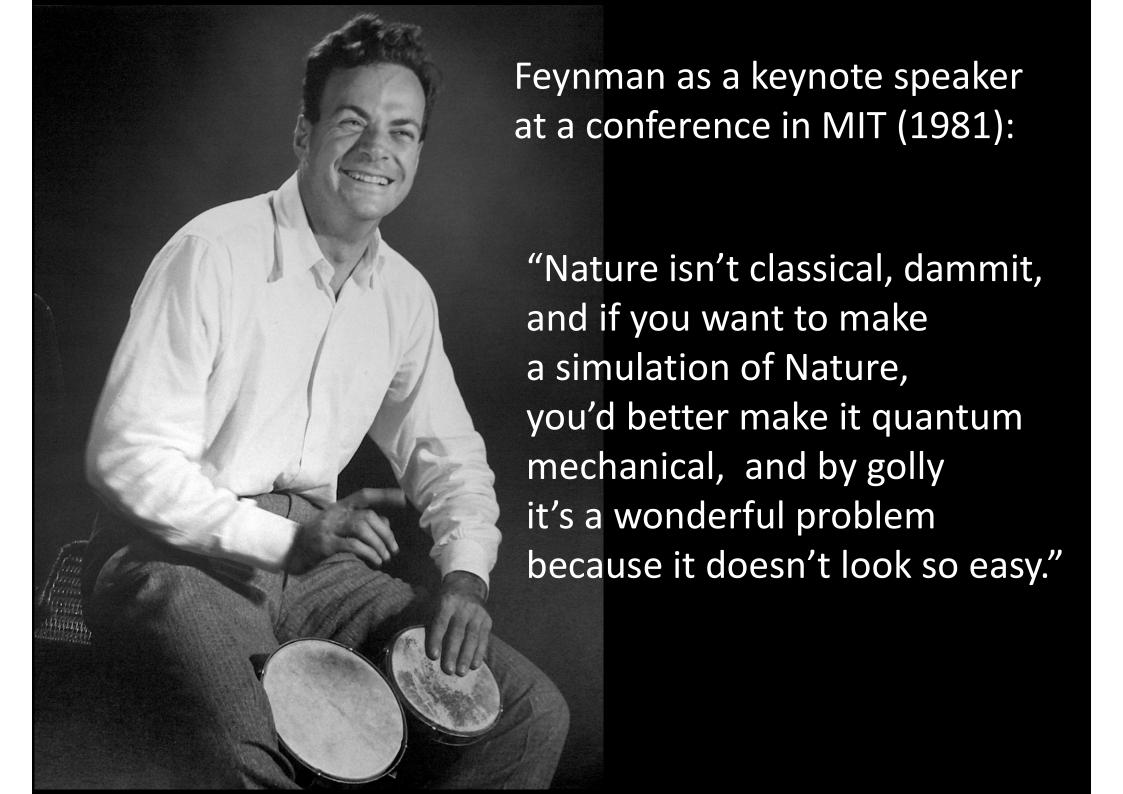
multiplications of matrices to vectors w/ sizes = 2^N

exponentially large steps

Quantum computer

•time evolution = O(NM) experimental operations

polynomial steps



Contents

- 0. Introduction
- 1. Quantum computation (QC)
- 2. Ising model
- 3. QC for QFT
- 4. QC for QG
- 5. Outlook

"Regularization" of Hilbert space

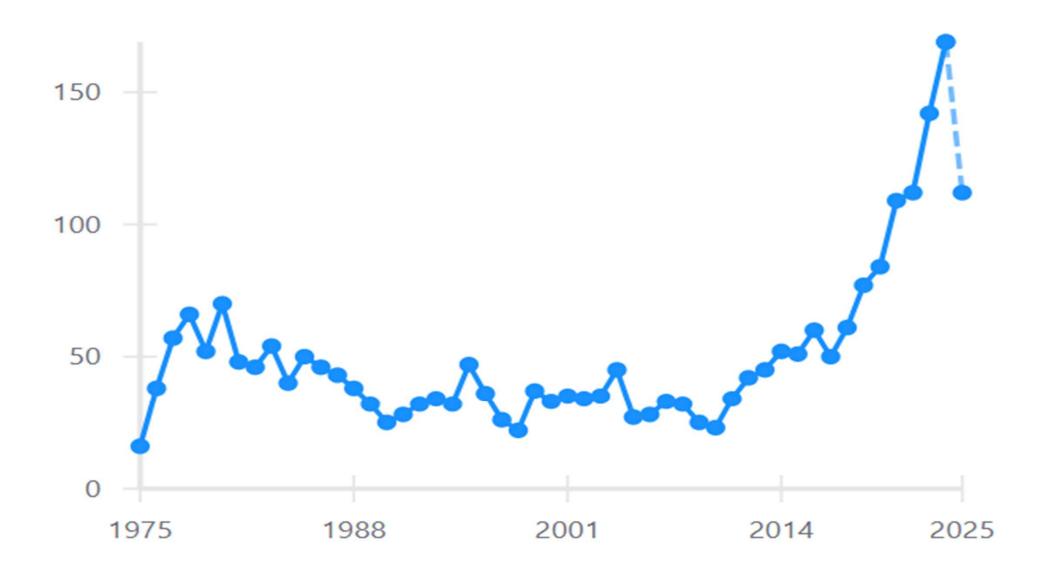
Hilbert space of QFT is typically ∞ dimensional

- → Make it finite dimensional!
- Fermion is easiest (up to doubling problem)
 - —— Putting on spatial lattice, Hilbert sp. is finite dimensional
 - scalar
 - Hilbert sp. at each site is ∞ dimensional (need truncation or additional regularization)
- gauge field (w/ kinetic term)
 - —— no physical d.o.f. in 0+1D/1+1D (w/ open bdy. condition)
 - ∞ dimensional Hilbert sp. in higher dimensions

<u>Citation history of "Hamiltonian Formulation of Wilson's Lattice Gauge Theories" by Kogut-Susskind</u>

Citations per year

(totally 2565 at this moment)



(1+1)d free Dirac fermion

Continuum:

$$H = \int dx \left[-i\overline{\psi}\gamma^{1}\partial_{1}\psi + m\overline{\psi}\psi \right] \qquad \psi(x) = \begin{pmatrix} \psi_{u}(x) \\ \psi_{d}(x) \end{pmatrix} \qquad \gamma^{0} = \sigma_{3},$$

$$= \int dx \left[-i(\psi_{u}^{\dagger}\partial_{1}\psi_{d} + \psi_{d}^{\dagger}\partial_{1}\psi_{u}) + m(\psi_{u}^{\dagger}\psi_{u} - \psi_{d}^{\dagger}\psi_{d}) \right]$$

Lattice (w/ N sites and spacing a):

"Staggered fermion" [Susskind, Kogut-Susskind '75]

$$\frac{\chi_n}{a^{1/2}} \longleftrightarrow \psi(x) = \begin{bmatrix} \psi_u \\ \psi_d \end{bmatrix} \longrightarrow \text{odd site}$$
 even site

$$H = -\frac{i}{2a} \sum_{n=1}^{N-1} (\chi_n^{\dagger} \chi_{n+1} - \chi_{n+1}^{\dagger} \chi_n) + m \sum_{n=1}^{N} (-1)^n \chi_n^{\dagger} \chi_n$$

$$\{\chi_m,\chi_n^{\dagger}\}=\delta_{\mathrm{mn}},\ \{\chi_m,\chi_n\}=0$$

Jordan-Wigner transformation

$$\{\chi_m,\chi_n^{\dagger}\}=\delta_{\mathrm{mn}},\ \{\chi_m,\chi_n\}=0$$

This is satisfied by the operator:

[Jordan-Wigner'28]

$$\chi_n = \frac{X_n - iY_n}{2} \left(\prod_{i=1}^{n-1} -iZ_i \right) \qquad (X_n, Y_n, Z_n: \sigma_{1,2,3} \text{ at site } n)$$

Jordan-Wigner transformation

$$\{\chi_m,\chi_n^{\dagger}\}=\delta_{\mathrm{mn}},\ \{\chi_m,\chi_n\}=0$$

This is satisfied by the operator:

[Jordan-Wigner'28]

$$\chi_n = \frac{X_n - iY_n}{2} \left(\prod_{i=1}^{n-1} -iZ_i \right) \qquad (X_n, Y_n, Z_n: \sigma_{1,2,3} \text{ at site } n)$$

Then the system is mapped to the spin system:

$$\widehat{H} = \frac{w}{2} \sum_{n=1}^{N-1} \left(X_n X_{n+1} + Y_n Y_{n+1} \right) + \frac{m}{2} \sum_{n=1}^{N} (-1)^n Z_n$$

Now we can apply quantum algorithms to QFT!

Scalar field theory

Continuum Hamiltonian:

$$H = \int d^d \mathbf{x} \left[\frac{1}{2} \Pi^2 + \frac{1}{2} (\partial_i \phi)^2 + V(\phi) \right]$$

$$\int d^d x \to a^d \sum_n,$$

$$\partial_\mu \phi(x) \to \Delta_\mu \phi(x_n) \equiv \frac{\phi(x_n + ae_\mu) - \phi(x_n)}{a}$$

Lattice Hamiltonian (simplest):

$$H = a^{d} \sum_{n} \left[\frac{1}{2} \Pi_{n}^{2} + \frac{1}{2} \sum_{i} (\Delta_{i} \phi_{n})^{2} + V(\phi_{n}) \right]$$

$$[\phi(\mathbf{x}_m),\Pi(\mathbf{x}_n)]=i\delta_{m,n}$$

technically the same as multi-particle QM

Regularization for single particle QM

$$\widehat{H} = \frac{1}{2}\widehat{p}^2 + \frac{\omega^2}{2}\widehat{x}^2 + V_{\text{int}}(\widehat{x})$$

Most naïve approach = truncation in harmonic osc. basis:

$$\hat{a} = \sqrt{\frac{\omega}{2}} \hat{x} + \frac{i}{\sqrt{2\omega}} \hat{p} = \sum_{n=0}^{\infty} \sqrt{n+1} |n\rangle\langle n+1|$$

$$\sum_{n=0}^{\Lambda-2} \sqrt{n+1} |n\rangle\langle n+1|$$
regularize! $n=0$

Then replace $\hat{p} \& \hat{x}$ by

$$\hat{x} \Big|_{\text{regularized}} \equiv \frac{1}{\sqrt{2\omega}} (\hat{a} + \hat{a}^{\dagger}) \Big|_{\text{regularized}}$$

$$\hat{p} \Big|_{\text{regularized}} \equiv \frac{1}{i} \sqrt{\frac{\omega}{2}} \left(\hat{a} - \hat{a}^{\dagger} \right) \Big|_{\text{regularized}}$$

Regularization for single particle QM (Cont'd)

$$\hat{a} \Big|_{\text{regularized}} = \sum_{n=0}^{\Lambda-2} \sqrt{n+1} |n\rangle\langle n+1|$$

We can rewrite the Fock basis in terms of qubits:

$$|n\rangle = |b_{K-1}\rangle|b_{K-2}\rangle\cdots|b_0\rangle$$
 $K \equiv \log_2 \Lambda$

$$n = b_{K-1}2^{K-1} + b_{K-2}2^{K-2} + \dots + b_02^0$$
 (binary representation)

Regularization for single particle QM (Cont'd)

$$\hat{a} \Big|_{\text{regularized}} = \sum_{n=0}^{\Lambda-2} \sqrt{n+1} |n\rangle\langle n+1|$$

We can rewrite the Fock basis in terms of qubits:

$$|n\rangle = |b_{K-1}\rangle|b_{K-2}\rangle\cdots|b_0\rangle$$
 $K \equiv \log_2 \Lambda$

$$n = b_{K-1}2^{K-1} + b_{K-2}2^{K-2} + \dots + b_02^0$$
 (binary representation)

Then,

$$|n\rangle\langle n+1| = \bigotimes_{\ell=0}^{K-1} \underbrace{(|b'_{\ell}\rangle\langle b_{\ell}|)}_{\text{either one of }}$$

$$|0\rangle\langle 0| = \frac{1_2 - \sigma_z}{2}, \qquad |1\rangle\langle 1| = \frac{1_2 + \sigma_z}{2},$$
$$|0\rangle\langle 1| = \frac{\sigma_x + i\sigma_y}{2}, \qquad |1\rangle\langle 0| = \frac{\sigma_x - i\sigma_y}{2}$$

Pure Maxwell theory

Continuum:

$$\mathcal{H} = \frac{1}{2}E_i^2 + \frac{1}{2}B_i^2 \qquad \partial_i E^i = 0$$

Lattice:

$$\mathcal{H} = \frac{a^d}{2} \sum_{n,i} L_{n,i}^2 + \text{Re} \sum_{\text{plaquette } i < j} \sum_{P \in \text{plaquette}} U_P$$

$$[U_{m,i}, L_{n,j}] = i\delta_{ij}\delta_{m,n}$$

Gauss law:

$$\sum_{i} (L_{n+e_i,i} - L_{n,i}) = 0$$

Ex. (1+1)d pure Maxwell theory w/ θ

Continuum:
$$\Pi = \frac{1}{g^2} \dot{A} + \frac{\theta}{2\pi}$$

$$\mathcal{L} = \frac{1}{2g^2} F_{01}^2 + \frac{\theta}{2\pi} F_{01}$$

$$\mathcal{H} = \frac{1}{2} \left(\Pi - \frac{\theta}{2\pi} \right)^2$$

$$\Pi = \frac{1}{g^2}\dot{A} + \frac{\theta}{2\pi}$$

$$\mathcal{H} = \frac{1}{2} \left(\Pi - \frac{\theta}{2\pi} \right)^2$$

Lattice:

$$H = \frac{g^2 a}{2} \sum_{n} \left(L_n + \frac{\theta}{2\pi} \right)^2 \qquad L_n \leftrightarrow -\frac{\Pi(x)}{g}$$

Gauss law:

$$L_{n+1} - L_n = 0$$

$$L_n = L_{n-1} = L_{n-2} = \dots = L_1 = (b.c.)$$

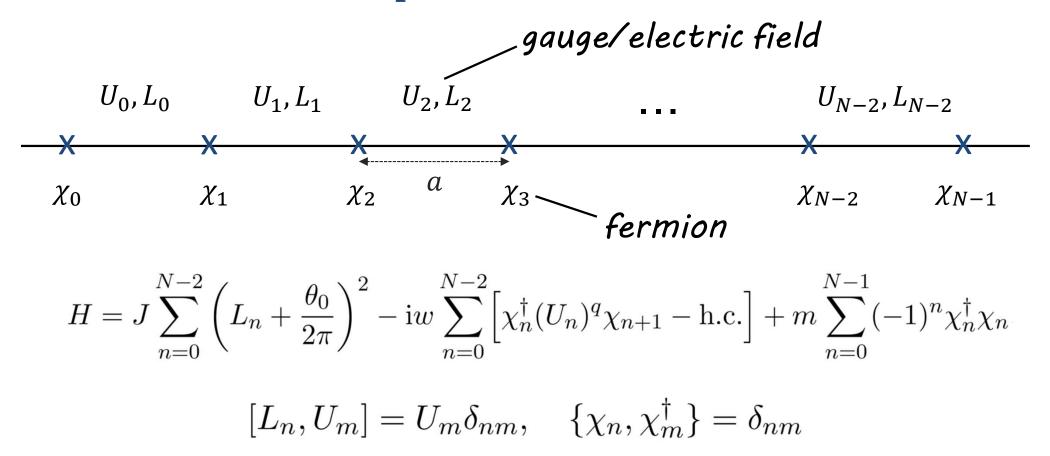
open b.c.
$$L_n = L_{n-1} = L_{n-2} = \cdots = L_1 = (b.c.)$$
 • p.b.c.
$$L_n = L_{n-1} = \cdots = L_1 = \cdots = L_{n+1} = L_n$$
 one d.o.f. remains

分野の大体の研究の流れ(?)

基底状態 時間発展 散乱/崩壊 非平衡••• Spin chain Schwinger model 2+1d abelian 2+1d non-abelian 3+1d abelian 3+1d non-abelian

理論

Charge-q Schwinger model



Physical states are subject to Gauss law:

$$(L_n - L_{n-1})|\text{phys}\rangle = q\left[\chi_n^{\dagger}\chi_n - \frac{1 - (-1)^n}{2}\right]|\text{phys}\rangle$$

$$"\nabla \cdot \vec{E}(x)"$$

$$"\rho(x)"$$

Schwinger model as qubits

1. Take open b.c. & solve Gauss law:

$$L_n = L_{-1} + q \sum_{j=1}^n \left(\chi_j^{\dagger} \chi_j - \frac{1 - (-1)^j}{2} \right)$$
 w/ $L_{-1} = 0$

- 2. Take the gauge $U_n = 1$
- 3. Map to spin system: $\chi_n = \frac{X_n iY_n}{2} \left(\prod_{i=1}^{n-1} iZ_i \right)$ $(X_n, Y_n, Z_n: \sigma_{1,2,3} \text{ at site } n)$

"Jordan-Wigner transformation"

[Jordan-Wigner'28]

$$H = J \sum_{n=0}^{N-2} \left[q \sum_{i=0}^{n} \frac{Z_i + (-1)^i}{2} + \frac{\vartheta_n}{2\pi} \right]^2 + \frac{w}{2} \sum_{n=0}^{N-2} \left[X_n X_{n+1} + Y_n Y_{n+1} \right] + \frac{m}{2} \sum_{n=0}^{N-1} (-1)^n Z_n$$

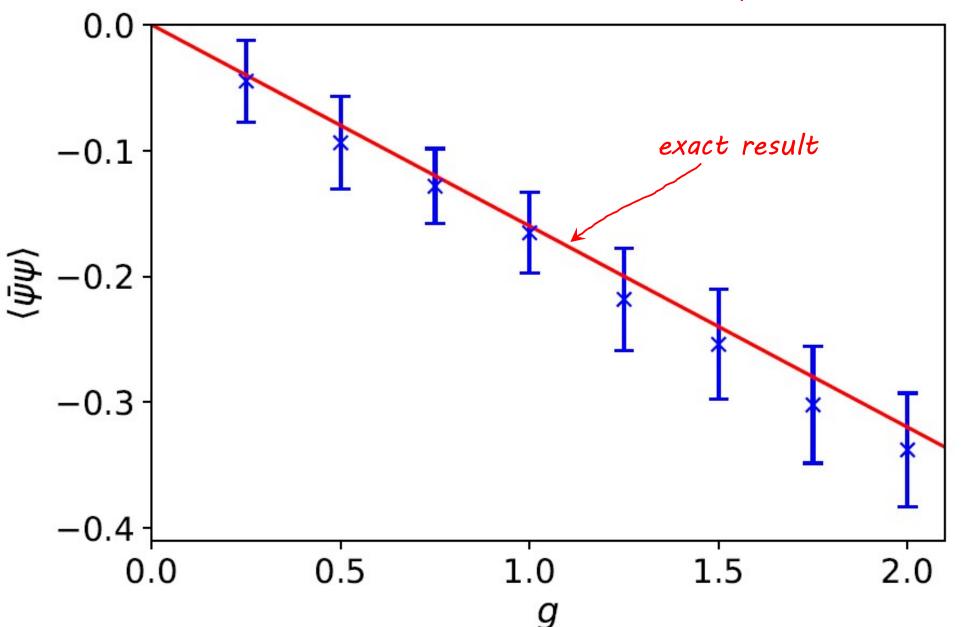
Qubit description of the Schwinger model!!

Ground state expectation value in massless case

$$T = 100, \delta t = 0.1, N_{\text{max}} = 16, 1M \text{ shots}$$

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya '20]

(after continuum limit)



Screening versus Confinement

Let's consider

potential between 2 heavy charged particles

Classical picture:

$$V(x) = \frac{q_p^2 g^2}{2} x ?$$
Coulomb law in 1+1d
$$| |$$
confinement

too naive in the presence of dynamical fermions

Expectations from previous analyzes

Potential between probe charges $\pm q_{p}$ has been analytically computed

[Iso-Murayama '88, Gross-Klebanov-Matytsin-Smilga '95]

massless case:

$$V(x) = \frac{q_p^2 g^2}{2\mu} (1 - e^{-q\mu x})$$
 screening

massive case:

Expectations from previous analyzes

Potential between probe charges $\pm q_p$ has been analytically computed

[Iso-Murayama '88, Gross-Klebanov-Matytsin-Smilga '95]

massless case:

$$V(x) = \frac{q_p^2 g^2}{2\mu} (1 - e^{-q\mu x})$$
 screening

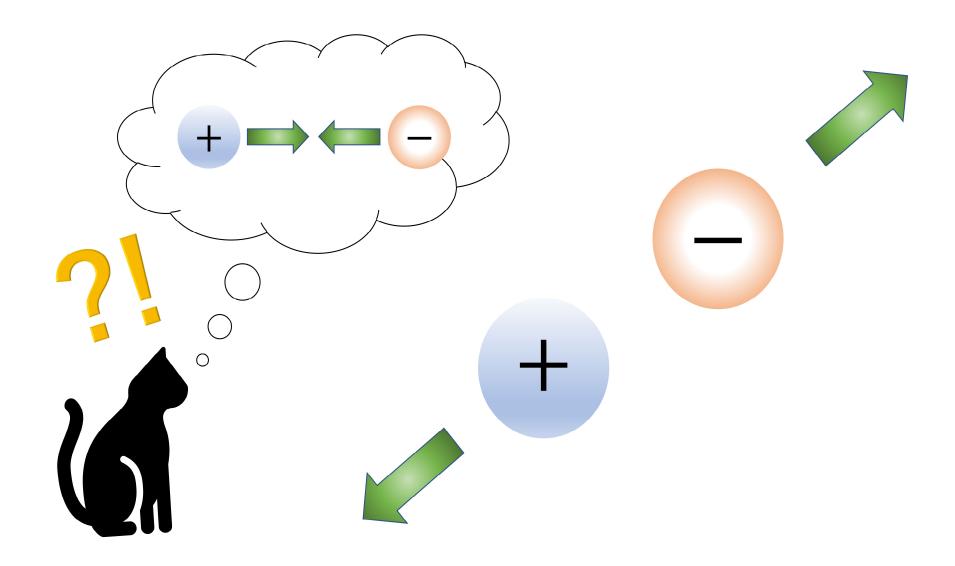
massive case:

[cf. Misumi-Tanizaki-Unsal '19]

$$\Sigma \equiv ge^{\gamma}/2\pi^{3/2}$$

$$V(x) \sim mq\Sigma \left(\cos\left(\frac{\theta + 2\pi q_p}{q}\right) - \cos\left(\frac{\theta}{q}\right)\right) x$$
 $(m \ll g, |x| \gg 1/g)$

That is, as changing the parameters...



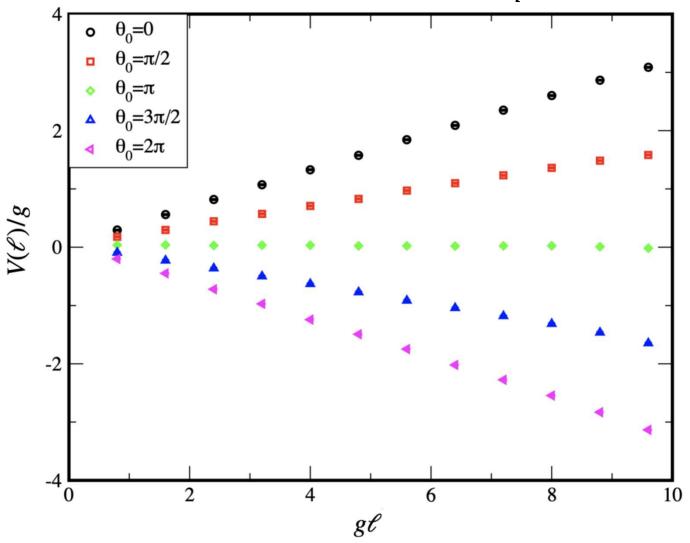
Let's explore this aspect by quantum simulation!

Positive / negative string tension

[MH-Itou-Kikuchi-Tanizaki '21]

[cf. MH-Itou-Kikuchi-Nagano-Okuda '21]

Parameters: g = 1, a = 0.4, N = 25, T = 99, $q_p/q = -1/3$, m = 0.15

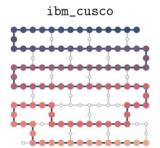


Sign(tension) changes as changing θ -angle!!

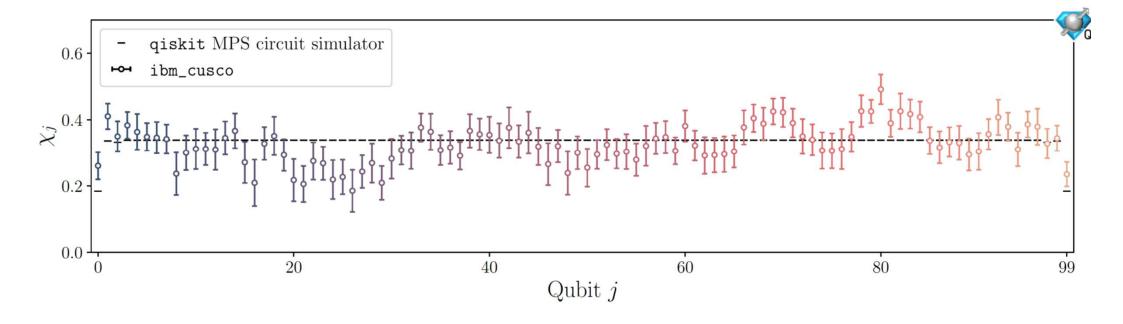
100 qubit simulation of Schwinger model

(127-qubit device: ibm_cusco w/ error mitigation)

[Farrel-Illa-Ciavarella-Savage '23]



Ground state exp. of local chiral condensate:



Other simulations of Schwinger model

decay of massive vacuum under time evolution

[cf. Martinez etal. **Nature** 534 (2016) 516-519]

- •quenched dynamics of heta [Nagano-Bapat-Bauer '23]
- Schwinger model in open quantum system

[De Jong-Metcalf-Mulligan-Ploskon-Ringer-Yao '20, de Jong-Lee-Mulligan-Ploskon-Ringer-Yao '21, Lee-Mulligan-Ringer-Yao '23]

112 qubit simulation of meson propagation

[Farrell-Illa-Ciavarella-Savage '24]

- finding energy spectrum [MH-Ghim, work in progress]
- finite temperature [Itou-Sun-Pedersen-Yunoki '23]

etc...

"Scattering" in Thirring model

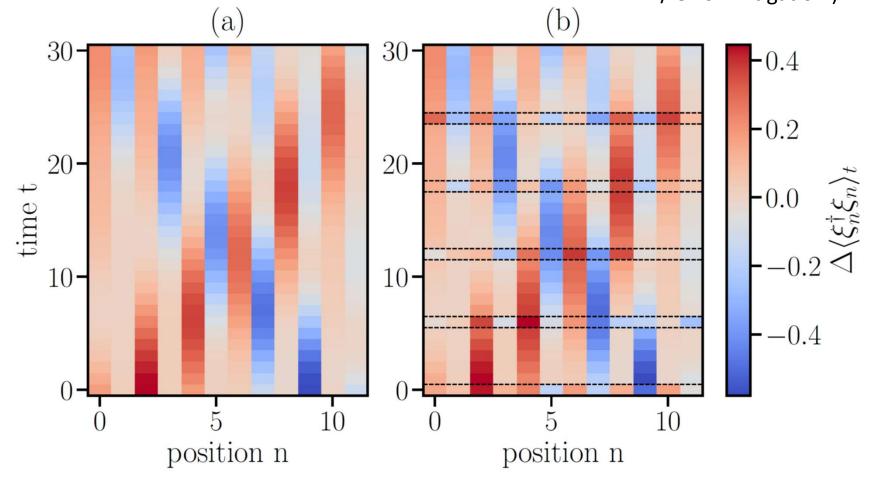
Thirring model on lattice:

[Chai-Crippa-Jansen-Kuhn-Pascuzzi-Tacchino-Tavernelli '23]

$$H = \sum_{n=0}^{N-1} \left(\frac{i}{2a} \left(\xi_{n+1}^{\dagger} \xi_n - \xi_n^{\dagger} \xi_{n+1} \right) + (-1)^n m \; \xi_n^{\dagger} \xi_n \right) + \sum_{n=0}^{N-1} \frac{g(\lambda)}{a} \xi_n^{\dagger} \xi_n \xi_{n+1}^{\dagger} \xi_{n+1},$$

Particle density of two wave packets:

(12-qubit device: **ibm_peekskill** w/ error mitigation)

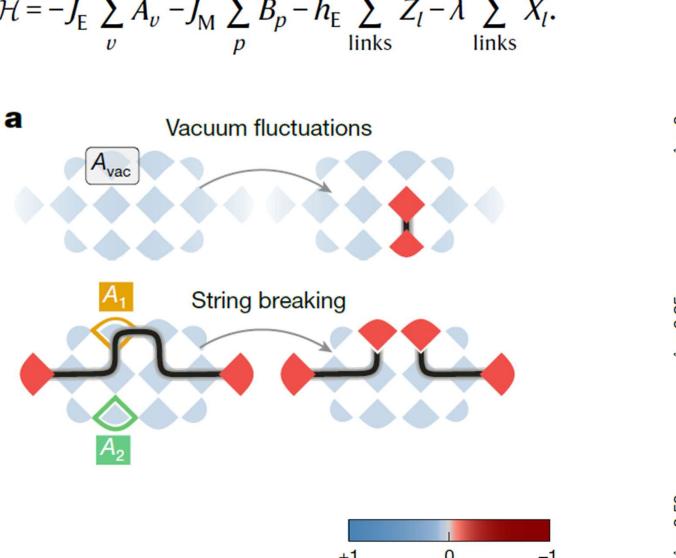


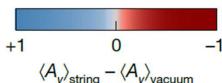
String breaking in $2+1d Z_2$ gauge theory (?)

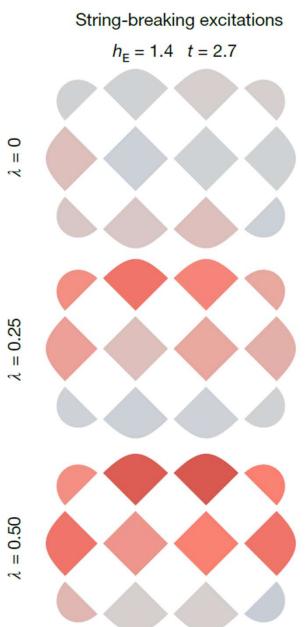
[Simulation by 72 qubit Google Sycamore '24]

b

$$\mathcal{H} = -J_{E} \sum_{v} A_{v} - J_{M} \sum_{p} B_{p} - h_{E} \sum_{links} Z_{l} - \lambda \sum_{links} X_{l}.$$







On higher dimensional fermion

Go to higher dimensions!

[MH, work in progress]

1st step: find a nice way to map 2d fermion to spins

Problem in naïve approach:

$$\chi_n = \frac{X_n - \mathrm{i} Y_n}{2} \left(\prod_{i=1}^{n-1} - \mathrm{i} Z_i \right)$$

$$\chi_{n+1}^{\dagger}\chi_n$$

$$\chi_{n+1}^{\dagger}\chi_n$$
 Jordan-Wigner $\exists X_{n+1}X_n, Y_{n+1}Y_n, X_{n+1}Y_n, Y_{n+1}X_n$

local

- 2d

On higher dimensional fermion

Go to higher dimensions!

[MH, work in progress]

1st step: find a nice way to map 2d fermion to spins

Problem in naïve approach:

•1d

$$\chi_n = \frac{X_n - iY_n}{2} \left(\prod_{i=1}^{n-1} -iZ_i \right)$$

$$\chi_{n+1}^{\dagger}\chi_n$$
 Jordan-Wigner $\xrightarrow{\exists X_{n+1}X_n, Y_{n+1}Y_n, X_{n+1}Y_n, Y_{n+1}X_n}$

local

 $^{\bullet}$ 2d (*N* × *N* square lattice)

Relabeling site (i, j) like 1d label (say n = i + Nj),

$$\chi_{(i,j+1)}^{\dagger}\chi_{(i,j)} = \chi_{I+N}^{\dagger}\chi_{I} \xrightarrow{JW} \exists \chi_{I+N}\chi_{I} \prod_{i=I+1}^{I+N-1} Z_{i}$$
, etc...

(cf. $O(\log N)$ for Bravyi-Kitaev trans.)

non-local

On non-abelian gauge theory

³Various approaches but not sure which is better

- truncation of electric field [Byrnes-Yamamoto '05, etc...]
- truncation of representations
- discrete group [Gustafson-Ji-Lamm-Murairi-Perez'24, etc...]
- quantum group [Zache-Gonzalez-Cuadra-Zoller '23, Hayata-Hidaka '23]
- orbifold lattice [Buser-Gharibyan-Hanada-MH-Liu'20, etc...]
- fuzzy gauge theory [Alexandru-Bedaque-Carosso-Cervia-Murairi-Sheng '24]

Contents

- 0. Introduction
- 1. Quantum computation (QC)
- 2. Ising model
- 3. QC for QFT
- 4. QC for QG
- 5. Outlook

Quantum Gravity on Quantum Computer (QG) (QC)

Most difficult point:

We don't know what (realistic) QG is...

Approaches:

Quantum Gravity on Quantum Computer (QG)

Most difficult point:

We don't know what (realistic) QG is...

Approaches:

- 1. study situations w/ known formulations
 - —— e.g. (1+1) & (2+1) dimensions
- 2. assume hypothetical formulations & use them
 - —— e.g. loop QG, dynamical triangulation, etc...
- 3. study systems (hypothetically) equivalent to QG
 - e.g. holography, matrix model

Example of holography approach

nature

Explore content >

About the journal ∨

Publish with us Y

Subscribe

nature > articles > article

Article Published: 30 November 2022

Traversable wormhole dynamics on a quantum processor

Daniel Jafferis, Alexander Zlokapa, Joseph D. Lykken, David K. Kolchmeyer, Samantha I. Davis, Nikolai Lauk,

<u>Hartmut Neven</u> & <u>Maria Spiropulu</u> ✓

[Submitted on 15 Feb 2023]

Comment on "Traversable wormhole dynamics on a quantum processor"

Bryce Kobrin, Thomas Schuster, Norman Y. Yao

[Submitted on 27 Mar 2023]

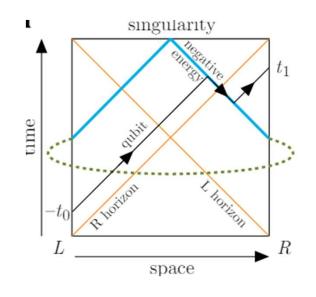
Comment on "Comment on "Traversable wormhole dynamics on a quantum processor" "

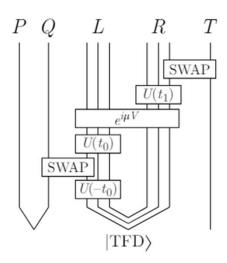
Daniel Jafferis, Alexander Zlokapa, Joseph D. Lykken, David K. Kolchmeyer, Samantha I. Davis, Nikolai Lauk, Hartmut Neven, Maria Spiropulu

Example of holography approach

"Wormhole experiment" by Google Sycamore:

[Nature, Jafferis-Zlokapa-Lykken-Kolchmeyer-Davis-Lauk-Neven-Spiropulu '23]





- simulation of sparse SYK model assuming holography for JT gravity
- based on various nontrivial assumptions
 - → contravarcy on whether wormhole was really made

Can we make it directly on the gravity side?

Example of direct approach

<u>Jackiw-Teitelboim gravity (JT gravity):</u>

[work in progress, MH]

$$I_{\rm JT} = \int_M d^2x \sqrt{-g} \Phi(R+2) + 2 \int_{\partial M} \sqrt{|\gamma|} \Phi(K-1) + \cdots$$

(R:curvature, Φ : scalar)

Example of direct approach

<u>Jackiw-Teitelboim gravity (JT gravity):</u>

[work in progress, MH]

$$I_{\rm JT} = \int_M d^2x \sqrt{-g} \Phi(R+2) + 2 \int_{\partial M} \sqrt{|\gamma|} \Phi(K-1) + \cdots$$
(R:curvature, Φ : scalar)

Switching to operator formalism & solving physical conditions, the analysis is boiled down to a one-particle quantum mechanics:

[Jafferis-Kolchmeyer '19]

$$H_{\rm JT} = \frac{p^2}{2} + \frac{1}{2}e^{-x}$$

We can simulate the JT gravity by simulating this!

Note: this is exactly solvable QM but we can also formulate JT gravity coupled to matter in a similar way which is not exactly solvable

How to simulate wormhole physics

[work in progress, MH]

1. Truncation by cutoff Λ :

$$H_{\rm JT} = \frac{p^2}{2} + \frac{1}{2}e^{-x}$$
 truncation H_{Λ}

2. Construct a Hartle-Hawking state

$$|\Psi_{\beta}^{\Lambda}\rangle \coloneqq \sum_{n=0}^{\Lambda} f_{\beta}(E_n)|E_n\rangle$$

imaginary time evolution

[cf. Kosugi-Nishiya-Nishi-Matsushita '21]

3. Look at time evolution of survival probability

$$P(t) \coloneqq \left| \left\langle \Psi_{\beta}^{\Lambda} \middle| e^{-iH_{\Lambda}t} \middle| \Psi_{\beta}^{\Lambda} \right\rangle \right|^{2}$$

(wormhole contributions appear as exponential decay as a function of coupling)

Example of matrix model approach

Matrix Quantum Mechanics (QM)

literally

QM of matrices

Ex.) One Hermitian matrix QM:

(X(t): Hermitian matrix)

Path integral formalism

$$L = \operatorname{Tr}\left[\frac{1}{2}\dot{X}^2 - V(X)\right], \qquad Z = \int DX e^{i\int dt L}$$

Operator formalism

$$H = \operatorname{Tr}\left[\frac{1}{2}P^2 + V(X)\right], \qquad \left[X_{ij}, P_{k\ell}\right] = i\delta_{ik}\delta_{j\ell}$$

Technically,

special case of many particle QM

BMN matrix model (U(N)) gauged matrix QM)

[Berenstein-Maldacena-Nastase '02]

$$L = \frac{1}{g^2} \text{Tr} \left\{ \frac{1}{2} (D_t X_I)^2 + \frac{1}{4} [X_I, X_J]^2 - \frac{\mu^2}{18} X_i^2 - \frac{\mu^2}{72} X_a^2 - \frac{i\mu}{6} \epsilon^{ijk} X_i X_j X_k + \frac{i}{2} \Psi^{\dagger} D_t \Psi - \frac{1}{2} \Psi^{\dagger} \gamma_I [X_I, \Psi] - \frac{i\mu}{8} \Psi^{\dagger} \gamma_{123} \Psi \right\},$$

- (0+1) dim. U(N) gauge theory
- all the fields are $N \times N$ Hermitian matrices
- X_I : bosonic matrices $(I = 1, \dots, 9)$
- Ψ: 16 component Majorana-Weyl fermion

$$i = 1,2,3, a = 4, \dots, 9$$

BMN matrix model (cont'd)

[Berenstein-Maldacena-Nastase '02]

$$L = \frac{1}{g^2} \text{Tr} \left\{ \frac{1}{2} (D_t X_I)^2 + \frac{1}{4} [X_I, X_J]^2 - \frac{\mu^2}{18} X_i^2 - \frac{\mu^2}{72} X_a^2 - \frac{i\mu}{6} \epsilon^{ijk} X_i X_j X_k + \frac{i}{2} \Psi^{\dagger} D_t \Psi - \frac{1}{2} \Psi^{\dagger} \gamma_I [X_I, \Psi] - \frac{i\mu}{8} \Psi^{\dagger} \gamma_{123} \Psi \right\},$$

related to various interesting "stringy" theories:

- -M-theory on pp-wave spacetime $\mbox{-3d}\, \mathcal{N} = 8 \mbox{ SYM on } \mbox{\it R} \times S^2 \sim \mbox{D2-branes in IIA string theory }$
 - •4d $\mathcal{N}=4$ SYM on $\mathbf{R}\times S^3\sim$ D3-branes in IIB string theory

[Ishii-Ishiki-Shimasaki-Tsuchiya '08, etc...]

• 6d $\mathcal{N}=(2,0)$ theory on $\mathbf{R}\times S^5\sim$ M5-branes in M-theory [Maldacena-Sheikh-Jabbari-Van Raam: • holographic duals

[Maldacena-Sheikh-Jabbari-Van Raamsdonk '02]

Operator formalism

$$\Psi = \begin{pmatrix} \psi_{Ip} \\ \epsilon_{pq} \psi^{\dagger Iq} \end{pmatrix}$$

$$\begin{split} \hat{H} &= \text{Tr} \Bigg\{ \frac{1}{2} (\hat{P}_{I})^{2} - \frac{g^{2}}{4} [\hat{X}_{I}, \hat{X}_{J}]^{2} + \frac{\mu^{2}}{18} \hat{X}_{i}^{2} + \frac{\mu^{2}}{72} \hat{X}_{a}^{2} + \frac{i\mu g}{3} \epsilon^{ijk} \hat{X}_{i} \hat{X}_{j} \hat{X}_{k} \\ &+ g \hat{\psi}^{\dagger Ip} \sigma_{p}^{i\, q} [\hat{X}_{i}, \hat{\psi}_{Iq}] - \frac{g}{2} \epsilon_{pq} \hat{\psi}^{\dagger Ip} g_{IJ}^{a} [\hat{X}_{a}, \hat{\psi}^{\dagger Jq}] + \frac{g}{2} \epsilon^{pq} \hat{\psi}_{Ip} (g^{a\dagger})^{IJ} [\hat{X}_{a}, \hat{\psi}_{Jq}] + \frac{\mu}{4} \hat{\psi}^{\dagger Ip} \hat{\psi}_{Ip} \Bigg\}. \end{split}$$

Commutation relations:

 (α, β) : gauge indices

$$\left[\widehat{X}_{I\alpha} , \widehat{P}_{J\beta} \right] = i \delta_{IJ} \delta_{\alpha\beta} , \quad \left\{ \widehat{\psi}^{\dagger Ip\alpha} , \widehat{\psi}_{Jq}^{\beta} \right\} = \delta_{IJ} \delta^{pq} \delta^{\alpha\beta}$$

Gauss law:

$$\widehat{G}_{\alpha}|phys\rangle = 0$$
 w/ $\widehat{G}_{\alpha} = \sum_{\beta,\gamma=1}^{N^2} \left(\sum_{I=1}^9 \widehat{X}_I^{\beta} \widehat{P}_I^{\gamma} - i \sum_{I,p} \widehat{\psi}^{\dagger Ip\alpha} \widehat{\psi}_{Ip}^{\gamma}\right)$

We can regularize it as in scalar field theory

Computational costs

of qubits:

- •Single particle QM w/ truncation Λ requires $\log_2 \Lambda$ qubits
- The BMN model has 9 scalars & 16 component real fermion which are $N \times N$ matrices

$$\supset$$
 $9N^2 \log_2 \Lambda + 8N^2$ qubits

of spin ops. in Hamiltonian:

- •each annihilation/creation op. has less than $\mathcal{O}(\Lambda^2)$ spin ops.
- we have 4-pt. interaction at most
- \bullet ∃ $\mathcal{O}(N^4)$ combinations regarding the color indices

of qubits to simulate black hole

BMN w/ truncation has

[Maldacena '23]

$$9N^2 \log_2 \Lambda + 8N^2$$
 qubits

What $N \& \Lambda$ needed to simulate black hole?

MC study suggests BH entropy is (approximately) reproduced at

$$N=16$$
, $\frac{T}{(g^2N)^{1/3}}=0.3$, $\frac{\mu}{T}=1.6$ [Patelpudis-Bergner-Hanada-Rinaldi-Schafer -Vranas-Watanabe-Bpdendorfer '22]

• Important energy levels should satisfy about $E_n < \mathcal{O}(T)$

$$\longrightarrow$$
 $\Lambda \sim 4$

Totally, we need

 ~ 7000 qubits

(similar to the condition for "quantum supremacy" in factoring integer)

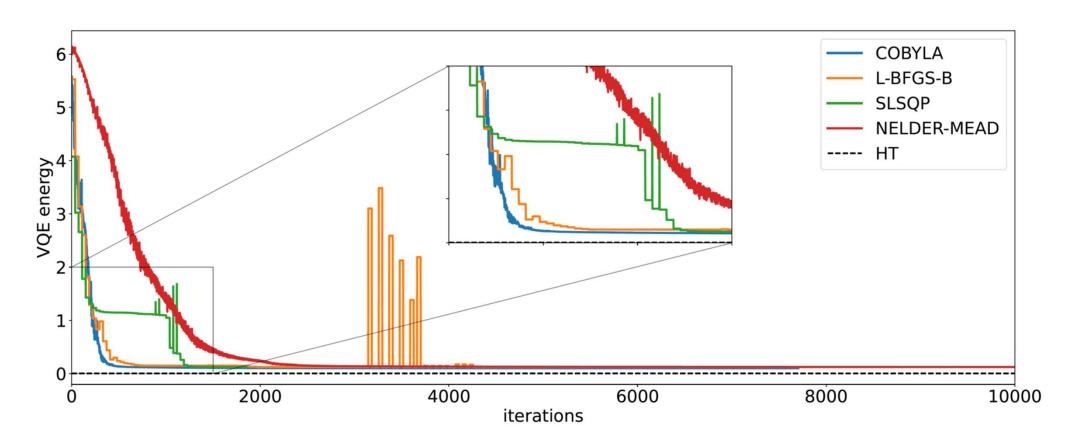
An implementation for "SU(2) mini-BMN"

[Rinaldi-Han-Hassan-Feng-Nori-McGuigan-Hanada '21]

$$\hat{H} = \text{Tr}\left(\frac{1}{2}\hat{P}_I^2 - \frac{g^2}{4}[\hat{X}_I, \hat{X}_J]^2 + \frac{g}{2}\hat{\bar{\psi}}\Gamma^I[\hat{X}_I, \hat{\psi}] - \frac{3i\mu}{4}\hat{\bar{\psi}}\hat{\psi} + \frac{\mu^2}{2}\hat{X}_I^2\right) - (N^2 - 1)\mu$$

Ground state energy by VQE on simulator

$$(\Lambda = 2)$$



Near future prospect

In near future, available device is so-called

[Preskill '18]

Noisy intermediate-scale quantum device (NISQ)

w/ limited number of qubits & non-negligible errors

On such device,

- quantum error correction can't be enough
 - ⇒ nice if ∃a way to reduce errors w/o increasing qubits
 - "quantum error mitigation"
- algorithms w/ less gates are preferred

(Popular one for finding vacuum: "variational method")

Quantum Error mitigation

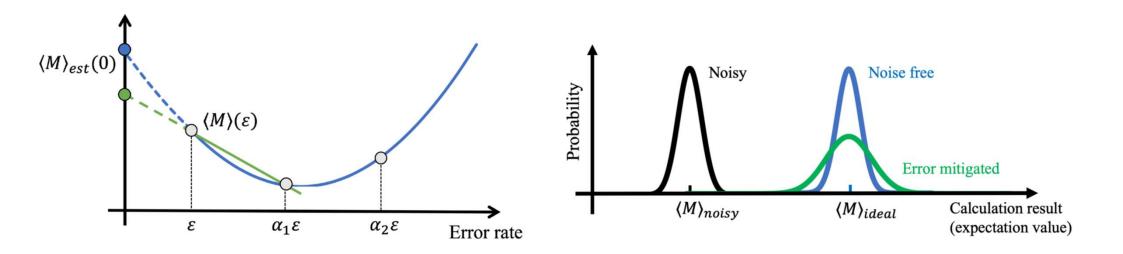
[Figs. are from Endo-Cai-Benjamin-Yuan '20]

the simplest way = extrapolation

In general,

difficult to decrease errors but possible to increase them

=> error-free result by fitting as a function of error rate



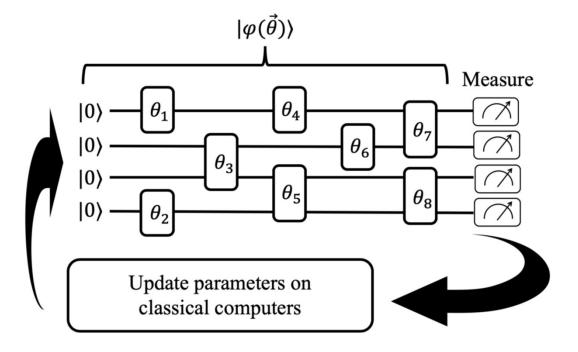
This doesn't need to increase qubits but needs more shots

Variational quantum algorithm

<u>Idea:</u>

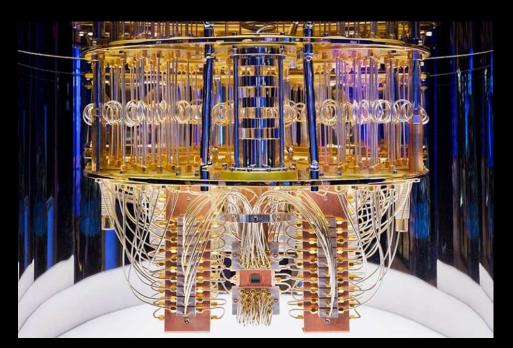
[Fig. is from Endo-Cai-Benjamin-Yuan '20]

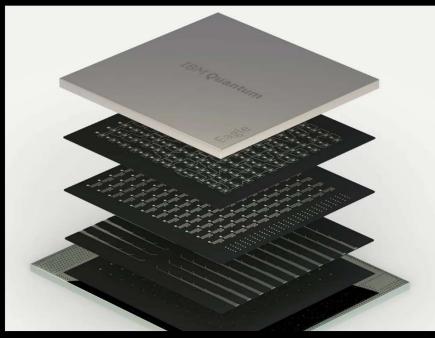
Acting gates & measurements \implies Quantum computer Parameter optimization \implies Classical computer



This method needs much less gates than adiabatic state preparation but it's not guaranteed to get true ground state

The challenge by IBM's 127-qubit device





Article

Evidence for the utility of quantum computing before fault tolerance

https://doi.org/10.1038/s41586-023-06096-3

Received: 24 February 2023

Accepted: 18 April 2023

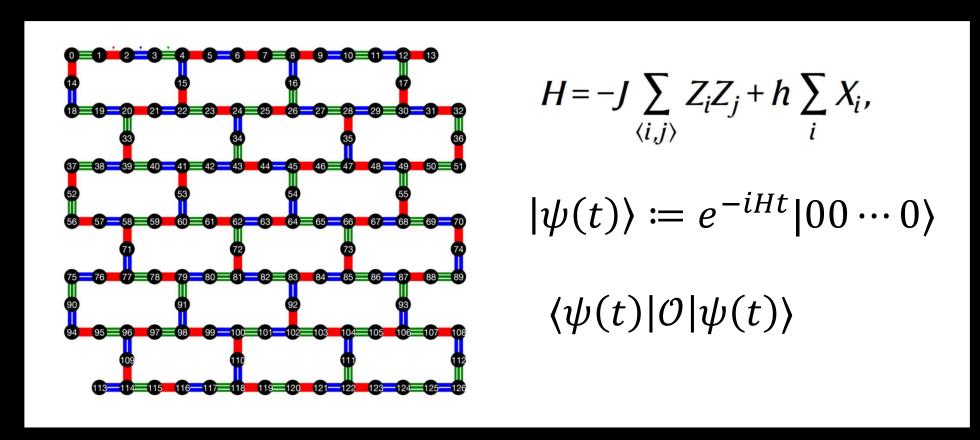
Published online: 14 June 2023

Youngseok Kim^{1,6 ⋈}, Andrew Eddins^{2,6 ⋈}, Sajant Anand³, Ken Xuan Wei¹, Ewout van den Berg¹, Sami Rosenblatt¹, Hasan Nayfeh¹, Yantao Wu³,4, Michael Zaletel³,5, Kristan Temme¹ & Abhinav Kandala¹ ⋈

Quantum computing promises to offer substantial speed-ups over its classical

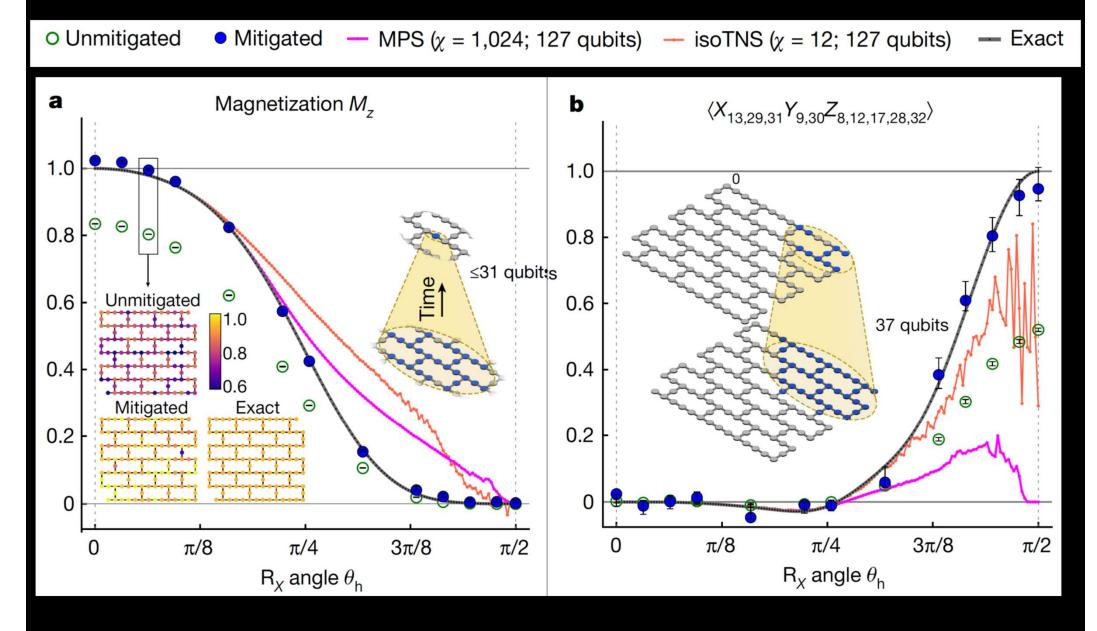
The challenge by IBM's 127-qubit device (cont'd)

<u>Task</u>: time evolution of Ising model on a lattice w/ shape = the qubit config. of the device



Strategy: Suzuki-Trotter approximation + error mitigation by extrapolation

The challenge by IBM's 127-qubit device (cont'd)



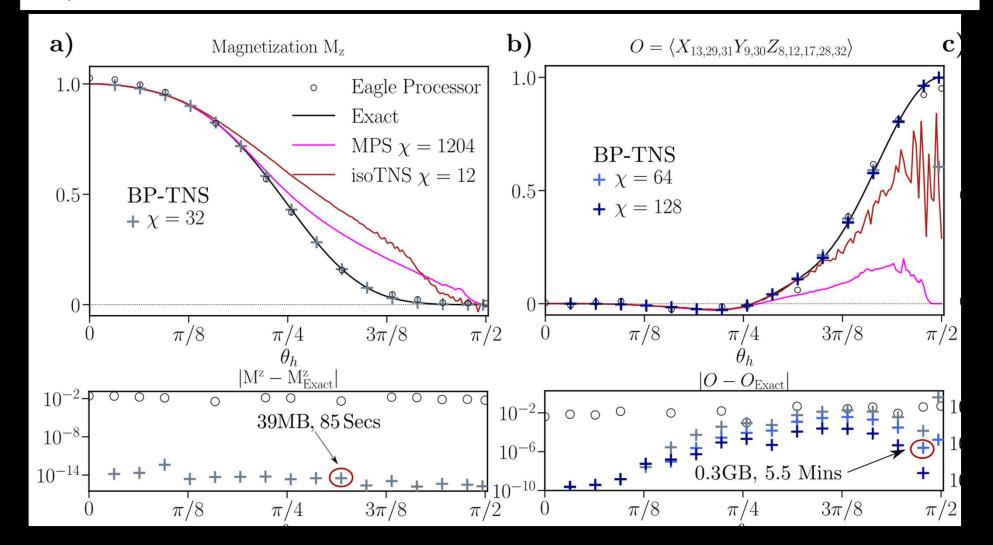
"Quantum supremacy"?

Quantum Physics

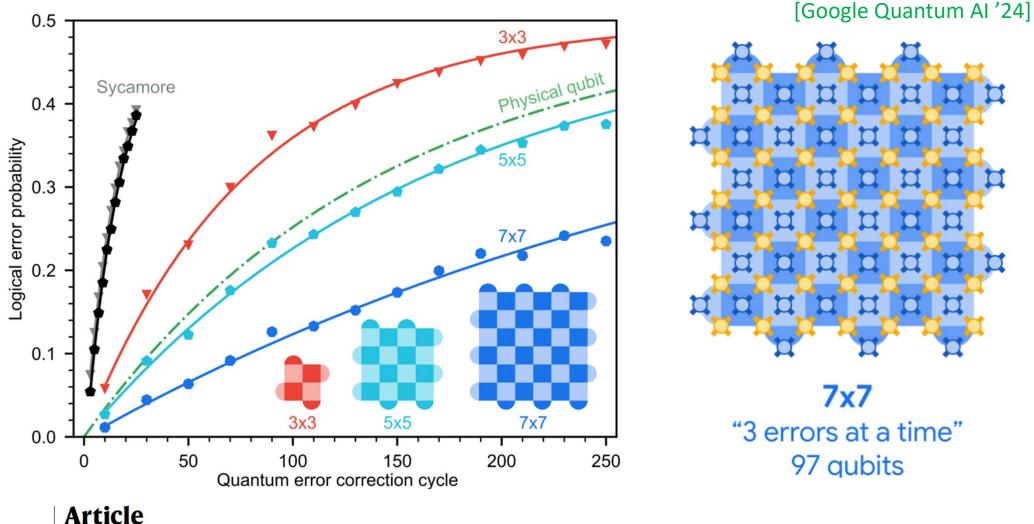
[Submitted on 26 Jun 2023]

Efficient tensor network simulation of IBM's kicked Ising experiment

Joseph Tindall, Matt Fishman, Miles Stoudenmire, Dries Sels

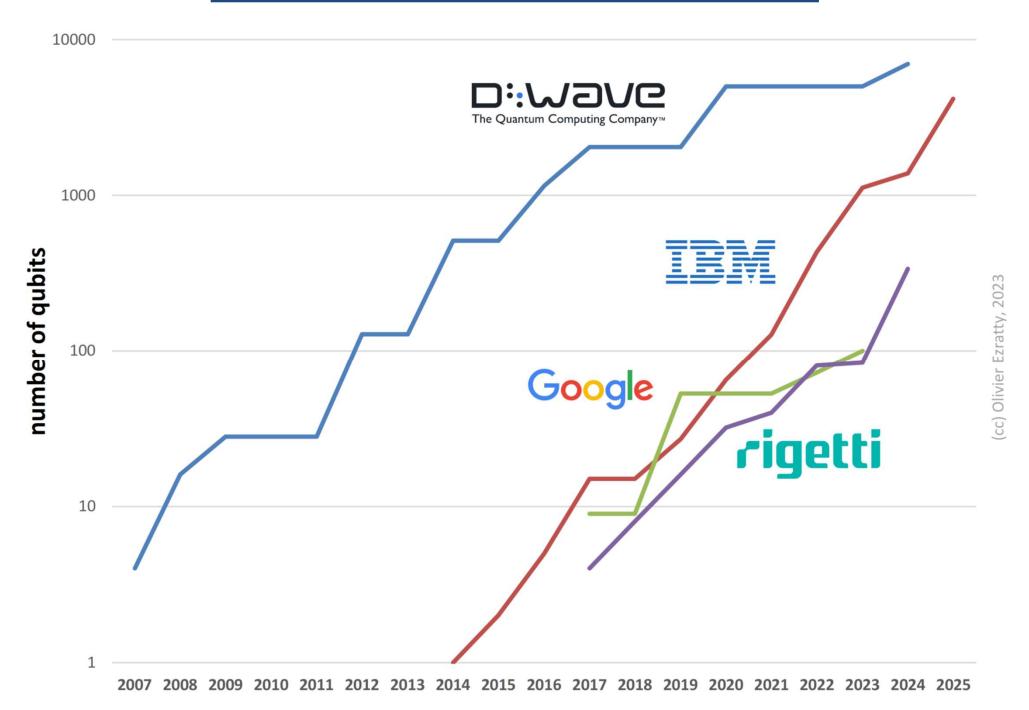


Implementation of error correction



Quantum error correction below the surface code threshold

"Quantum" Moore's law?



Cf. IBM's roadmap

2024 •	2025	2026	2027	2028	2029	2033+
Demonstrated accurate execution of a quantum circuit at a scale beyond exact classical simulation (5K gates on 156 qubits)	Deliver quantum + HPC tools that will leverage Nighthawk, a new higher-connectivity quantum processor able to execute more complex circuits	Enable the first examples of quantum advantage using a quantum computer with HPC	Improve quantum circuit quality to allow 10K gates	Improve quantum circuit quality to allow 15K gates	Deliver a fault-tolerant quantum computer with the ability to run 100M gates on 200 logical qubits	Beyond 2033, quantum computers will run circuits comprising a billion gates on up to 2000 logical qubits, unlocking the full power of quantum computing
Code assistant 🕝						
Functions 🕝		Use case benchmarking toolkit				
Advanced classical or transpilation tools	Advanced classical Somitigation tools	Utility mapping tools			Circuit libraries	
Plugins of the PC	C API	Profiling tools		Workflow accelerators		
200K CLOPS	Utility-scale 🔊 dynamic circuits				Fault-tolerant ISA	
Heron Ø (5K)	Nighthawk 3	Nighthawk (7.5K)	Nighthawk (10K)	Nighthawk (15K)	Starling (100M)	Blue Jay (1B)
5K gates 133 qubits	5K gates 120 qubits	7.5K gates 120 qubits Up to 120x3 = 360 qubits	10K gates 120 qubits Up to 120x9 = 1080 qubits	15K gates 120 qubits Up to 120x9 = 1080 qubits	Fouth-telorant 100M gates 200 logical qubits	Fastisticore 18 gates 2000 logical qubits

Thanks!